Chemical and Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    Utilisation of salty whey ultrafiltration permeate with electrodialysis
    Talebi, S ; Kee, E ; Chen, GQ ; Bathurst, K ; Kentish, SE (Elsevier, 2019-12-01)
    Salty whey is a waste by-product that incurs increasingly high disposal costs for the dairy industry. This study investigated electrodialysis of the ultrafiltration permeate of salty whey as either a concentrate for the treatment of sweet whey or as a source of lactose and salt. The type of concentrate (0.1 m NaCl or salty whey permeate) did not affect the rate of sweet whey demineralisation or the energy consumed per tonne of whey, but less sodium and more divalent cations were removed when salty whey permeate was used as the concentrate. Salty whey permeate could be effectively demineralised using either 0.1 m NaCl or a second stream of salty whey permeate as the concentrate. The concentrate purity could be enhanced using monovalent selective membranes without increasing the energy consumption of the process (3.2 ± 0.3 kWh per kg of NaCl removed from the diluate at 15 V).
  • Item
    Thumbnail Image
    Enhanced CO2 bio-utilization with a liquid-liquid membrane contactor in a bench-scale microalgae raceway pond
    Xu, X ; Martin, GJO ; Kentish, SE (Elsevier Ltd, 2019-12-01)
    Microalgae are able to absorb CO2 generated from sources such as flue gas to produce biomass with high lipid content. In this research, an immersed liquid-liquid membrane contactor was investigated to deliver CO2 captured by a chemical solvent to the microalgae culture via semipermeable membranes. Experiments showed that the CO2 mass transfer could be facilitated by using a thinner membrane support layer, or avoiding a support altogether, as the support was liquid filled which reduced the mass transfer coefficient. In order to better condition the culture media, the solvent flow was controlled by pH feedback. This scenario showed comparable biomass productivity (0.10 g L-1 d-1) to the conventional direct bubbling method, but with a lower energy cost and higher CO2 utilization efficiency. Further, a pond liner was formed from flat sheet membranes as a more effective alternative to a hollow fiber arrangement. The optimized system achieved a CO2 utilization efficiency of up to 90% compared to 47% with the uncontrolled hollow fiber membrane system and 11% for air sparging, thereby reducing the CO2 released to the atmosphere.
  • Item
    Thumbnail Image
    Critical review of strategies for CO2 delivery to large-scale microalgae cultures
    Zheng, Q ; Xu, X ; Martin, GJO ; Kentish, SE (CHEMICAL INDUSTRY PRESS, 2018-11-01)
    Microalgae have great, yet relatively untapped potential as a highly productive crop for the production of animal and aquaculture feed, biofuels, and nutraceutical products. Compared to conventional terrestrial crops they have a very fast growth rate and can be produced on non-arable land. During microalgae cultivation, carbon dioxide (CO2) is supplied as the carbon source for photosynthesising microalgae. There are a number of potential CO2 supplies including air, flue gas and purified CO2. In addition, several strategies have been applied to the delivery of CO2 to microalgae production systems, including directly bubbling CO2-rich gas, microbubbles, porous membrane spargers and non-porous membrane contactors. This article provides a comparative analysis of the different CO2 supply and delivery strategies and how they relate to each other.
  • Item
    Thumbnail Image
    Separation Technologies for Salty Wastewater Reduction in the Dairy Industry
    Chen, GQ ; Gras, SL ; Kentish, SE (Taylor & Francis, 2019-10-02)
    The wastewater discharged by cheese manufacturing processes is highly saline. This waste is generated from whey demineralization, chromatography and clean-in-place processes. Salty effluent can be diluted with other effluents and discharged as trade waste but the high salinity can trigger penalties imposed by local water authorities. Alternatively, such waste can be sent to evaporation ponds, but in some areas in Australia, environmental impacts regarding land degradation, odor and dust have prevented further pond construction. Similar concentrate and brine management issues are emerging in the seawater desalination and mining industries. This paper reviews a range of commercial and emerging separation technologies that may be suitable to both reduce the costs of salty wastewater treatment and to improve the recoveries of dairy and salt-based products. These technologies have been commercialized or applied at a laboratory scale to the fields of desalination and brine concentration. Each technology is discussed in terms of its principle of operation and suitability for treating high-salinity dairy wastewater. The potential energy requirement and processing cost of each technology is identified with respect to feed water salinity, to provide additional insights into the energy and cost efficiencies of these technologies.
  • Item
    Thumbnail Image
    Organic solvent nanofiltration of binary vegetable oil/terpene mixtures: Experiments and modelling
    Abdellah, MH ; Liu, L ; Scholes, CA ; Freeman, BD ; Kentish, SE (ELSEVIER, 2019-03-01)
    Bio-derived solvents such as ρ-cymene, d-limonene and α-pinene represent feasible alternatives to n-11 hexane for the extraction of vegetable oils. However, the large-scale utilization of these solvents is 12 still limited mainly owing to their high boiling points and latent heats of vaporization. In this work, the 13 performance of composite polydimethylsiloxane/polyacrylonitrile (PDMS/PAN) organic solvent 14 nanofiltration membranes in the recovery of these solvents from their binary mixtures with canola oil 15 is investigated. The sorption isotherms of the mixtures were first studied using free-standing PDMS 16 films and the multicomponent Flory-Huggins model used to determine the resulting interaction 17 parameters. The partial solvent uptake decreased with increasing oil concentration in the mixture. On 18 the other hand, the partial oil uptake in the solvent mixture was higher than that of the pure oil which 19 was attributed to the swelling effects induced by solvents. The effects of feed concentration (10-30 20 wt. % oil), feed temperature (25-40 °C), transmembrane pressure (5-30 bar), and cross-flow velocity 21 (18-52 cm s-1) on the membrane performance were then studied in a cross-flow membrane setup. 22 Maxwell-Stefan formulations were combined with the ternary Flory-Huggins solubility model to 23 successfully describe these flux data.
  • Item
    Thumbnail Image
    The effects of medium salinity on the delivery of carbon dioxide to microalgae from capture solvents using a polymeric membrane system
    Zheng, Q ; Martin, GJO ; Kentish, SE (SPRINGER, 2019-06-01)
    Efficient provision of carbon dioxide to microalgae is one of the major challenges to cost-effective large-scale cultivation. Previously, we have demonstrated the effectiveness of a novel membrane system in delivering CO2 to a marine strain of Chlorella sp. from CO2-loaded solvents. In this approach, the solvent is pumped through a non-porous hollow fibre membrane immersed in a microalgae medium, allowing passive transfer of CO2 that is utilised by the microalgae to enhance their growth, while simultaneously regenerating the solvent. In this article, we compare the growth of both fresh water and marine strains of algae using this membrane delivery system. While the fresh water medium has less pH buffering capacity and can dissolve less CO2, it proves similarly effective in delivering CO2 to the growing algae. Both the freshwater and marine species of Chlorella have slightly higher growth rates than the other species tested—Dunaliella tertiolecta and Haematococcus pluvialis. However, due to the lower osmotic pressure of the fresh water medium, more water is drawn through the membrane into the solvent than when the salt water medium is used. In conclusion, while CO2 delivery through the membrane system is effective for both salt and fresh water media, better performance is obtained for the salt water medium.
  • Item
    Thumbnail Image
    Fouling and in-situ cleaning of ion-exchange membranes during the electrodialysis of fresh acid and sweet whey
    Talebi, S ; Chen, GQ ; Freeman, B ; Suarez, F ; Freckleton, A ; Bathurst, K ; Kentish, SE (ELSEVIER SCI LTD, 2019-04-01)
    This work investigated the fouling of ion-exchange membranes during the electrodialysis of sweet and acid dairy whey. Fresh whey was used, rather than solutions made up in the laboratory, giving a unique perspective. While membrane fouling occurred in all experiments, the effects on system performance were limited. Reductions in the current during pure NaCl circulation fell to a minimum of 80% of the original value after 5 h of whey processing. The use of an alkaline concentrate resulted in the strongest increase in system resistance, but the mineral deposits formed appeared to detach readily, thereby reducing these effects. The use of an acidic concentrate gave significantly greater rates of lactic acid removal, which is important in industrial applications. A solution of HCl with a pH of 1.0 ± 0.15 was effective for in-situ cleaning of the mineral deposits. However, protein deposits were not readily removed using the recommended base cleaning formula of 3% NaCl at a pH of 9.2 ± 0.2.
  • Item
    Thumbnail Image
    An investigation of the impact of fouling agents in capacitive and membrane capacitive deionisation
    Hassanvand, A ; Chen, GQ ; Webley, PA ; Kentish, SE (Elsevier, 2019-05)
    The effect of organic fouling on both capacitive deionisation (CDI) and membrane capacitive deionisation (MCDI) was studied using two model foulants, the sodium salt of alginic acid and humic acid. Fouling of the activated carbon electrodes in the CDI cell was significant. The salt adsorption fell to 75% and the charge efficiency to 90% of their initial values after 18 cycles of operation with 0.5 mM CaCl 2 and 60 mg L −1 of sodium alginate. Similarly, the salt adsorption fell to 70% and the charge efficiency to 65% of their initial values after 18 cycles of operation with 60 mg L −1 of humic acid. The effect on MCDI was much more limited with these two foulants. The ability to clean the CDI cell with alkali cleaning agents was also investigated. While this cleaning was effective in restoring the salt adsorption, the alkali solution caused erosion of the activated carbon electrode or its PVDF binder, evidenced by an accumulation of carbon within the cleaning solution. Alternative electrode designs or alternative cleaning solutions will be needed if this approach is to be used in systems with similar foulants.
  • Item
    Thumbnail Image
    A pilot scale study on the concentration of milk and whey by forward osmosis.
    Chen, G ; Artemi, A ; Lee, J ; Gras, S ; Kentish, S (Elsevier, 2019-05-15)
    The concentration of skim milk and whey was investigated at a pilot scale using forward osmosis membranes with an installed membrane area of 24 m2. The pilot plant was operated in batch mode using a draw solution (48–57 g/L of NaCl) that mimics the potential brine streams available in a dairy processing plant. This approach avoids or limits the need for the regeneration of a synthetic draw solution. A concentration factor of ∼2.5 was achieved for both the skim milk and fresh whey, resulting in a total solids concentration of ∼21 wt% and 15 wt%, respectively. Increasing the transmembrane pressure was found to be effective in improving the water flux, whereas a much greater increase in the draw solution osmotic pressure would be needed to achieve the same enhancement of flux. This study also showed that small organic molecules, such as lactose, were not fully rejected by the forward osmosis membranes. A cleaning protocol was established for recovering the membrane performance after milk and whey concentration. The specific energy required for milk and whey concentration using only the forward osmosis step (5–10 kWh/t water removed) is much lower than that required by reverse osmosis. Forward osmosis is an energy efficient and effective process for dairy applications if unlimited access to a brine stream can be made available within or in the proximity of dairy processing plants.
  • Item
    Thumbnail Image
    A review of salty waste stream management in the Australian dairy industry
    Chen, GQ ; Talebi, S ; Gras, SL ; Weeks, M ; Kentish, SE (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2018-10-15)
    Saline wastewater is a by-product of cheese manufacturing and whey processing that can have serious environmental and economic consequences. Salty streams originating from dairy processing operations include chromatography wastes, clean-in-place wastewater, acid whey, salty whey and waste generated from whey demineralization processes such as nanofiltration, electrodialysis and ion exchange. With the participation of the major dairy companies in Australia, an industry wide survey was conducted to acquire a comprehensive understanding of the management strategies for these salty waste streams. High salinity waste streams are commonly directed to evaporation ponds. However, environmental impacts from land degradation, odour and dust have prevented the construction of further evaporation ponds in some areas of Australia. The survey results also show that disposal to municipal trade waste is not always effective, as the current levels of some salinity-related parameters are significantly higher than the levels allowed by the local water/environmental authorities. For high salinity streams, salt removal can lead to more substantial savings in trade waste charges compared to wastewater volume reduction. Thus, salt removal and recovery from salty waste streams has become a major focus of the sustainability agenda of the Australian dairy industry.