Chemical and Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Extremely Low Density and Super-Compressible Graphene Cellular Materials
    Qiu, L ; Huang, B ; He, Z ; Wang, Y ; Tian, Z ; Liu, JZ ; Wang, K ; Song, J ; Gengenbach, TR ; Li, D (WILEY-V C H VERLAG GMBH, 2017-09-27)
    Development of extremely low density graphene elastomer (GE) holds the potential to enable new properties that traditional cellular materials cannot offer, which are promising for a range of emerging applications, ranging from flexible electronics to multifunctional scaffolds. However, existing graphene foams with extremely low density are generally found to have very poor mechanical resilience. It is scientifically intriguing but remains unresolved whether and how the density limit of this class of cellular materials can be further pushed down while their mechanical resilience is being retained. In this work, a simple annealing strategy is developed to investigate the role of intersheet interactions in the formation of extreme-low-density of graphene-based cellular materials. It is discovered that the density limit of mechanically resilient cellular GEs can be further pushed down as low as 0.16 mg cm-3 through thermal annealing. The resultant extremely low density GEs reveal a range of unprecedented properties, including complete recovery from 98% compression in both of liquid and air, ultrahigh solvent adsorption capacity, ultrahigh pressure sensitivity, and light transmittance.
  • Item
    Thumbnail Image
    Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing
    Cheng, C ; Jiang, G ; Garvey, CJ ; Wang, Y ; Simon, GP ; Liu, JZ ; Li, D (AMER ASSOC ADVANCEMENT SCIENCE, 2016-02)
    Investigation of the transport properties of ions confined in nanoporous carbon is generally difficult because of the stochastic nature and distribution of multiscale complex and imperfect pore structures within the bulk material. We demonstrate a combined approach of experiment and simulation to describe the structure of complex layered graphene-based membranes, which allows their use as a unique porous platform to gain unprecedented insights into nanoconfined transport phenomena across the entire sub-10-nm scales. By correlation of experimental results with simulation of concentration-driven ion diffusion through the cascading layered graphene structure with sub-10-nm tuneable interlayer spacing, we are able to construct a robust, representative structural model that allows the establishment of a quantitative relationship among the nanoconfined ion transport properties in relation to the complex nanoporous structure of the layered membrane. This correlation reveals the remarkable effect of the structural imperfections of the membranes on ion transport and particularly the scaling behaviors of both diffusive and electrokinetic ion transport in graphene-based cascading nanochannels as a function of channel size from 10 nm down to subnanometer. Our analysis shows that the range of ion transport effects previously observed in simple one-dimensional nanofluidic systems will translate themselves into bulk, complex nanoslit porous systems in a very different manner, and the complex cascading porous circuities can enable new transport phenomena that are unattainable in simple fluidic systems.
  • Item
  • Item
    Thumbnail Image
    Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes
    Cheng, C ; Jiang, G ; Simon, GP ; Liu, JZ ; Li, D (NATURE PUBLISHING GROUP, 2018-08)
    Ion transport in nanoconfinement differs from that in bulk and has been extensively researched across scientific and engineering disciplines1-4. For many energy and water applications of nanoporous materials, concentration-driven ion diffusion is simultaneously subjected to a local electric field arising from surface charge or an externally applied potential. Due to the uniquely crowded intermolecular forces under severe nanoconfinement (<2 nm), the transport behaviours of ions can be influenced by the interfacial electrical double layer (EDL) induced by a surface potential, with complex implications, engendering unusual ion dynamics5-7. However, it remains an experimental challenge to investigate how such a surface potential and its coupling with nanoconfinement manipulate ion diffusion. Here, we exploit the tunable nanoconfinement in layered graphene-based nanoporous membranes to show that sub-2 nm confined ion diffusion can be strongly modulated by the surface potential-induced EDL. Depending on the potential sign, the combination and concentration of ion pairs, diffusion rates can be reversibly modulated and anomalously enhanced by 4~7 times within 0.5 volts, across a salt concentration gradient up to seawater salinity. Modelling suggests that this anomalously enhanced diffusion is related to the strong ion-ion correlations under severe nanoconfinement, and cannot be explained by conventional theoretical predictions.
  • Item
    Thumbnail Image
    An equivalent 1D nanochannel model to describe ion transport in multilayered graphene membranes
    Jiang, G ; Wang, P ; Cheng, C ; Li, D ; Liu, JZ (Elsevier, 2018)
    Multilayered graphene-based membranes are promising for a variety of applications related to ion or molecule transport, such as energy storage and water treatment. However, the complex three-dimensional cascading nanoslit-like structure embedded in the membrane makes it difficult to interpret and rationalize experimental results, quantitatively compare with the traditional membrane systems, and quantitatively design new membrane structures. In this paper, systematic numerical simulations were performed to establish an equivalent one-dimensional (1D) nanochannel model to represent the structure of multilayered graphene membranes. We have established a quantitative relationship between effective diffusion length and cross-section area of the 1D model and our recently developed two dimensional (2D) representative microstructure for graphene membranes. We find that only in the cases of a relatively large lateral size (> ~100 nm) and a small slit size (< 2 nm), the effective diffusion length and can be calculated by an over-simplified but often used model. Otherwise, they show complex dependence on all three structural parameters of the 2D structural model. Our equivalent 1D nano-channel model can reproduce experimental results very well except for h < 0.5 nm. The discrepancy could be attributed to the anomalous behaviour of molecules under nano-confinement that is not considered in our simulations. This model can also be extended to multilayered membranes assembled by other 2D materials.