Chemical and Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Surface Modification of Spider Silk Particles to Direct Biomolecular Corona Formation.
    Weiss, ACG ; Herold, HM ; Lentz, S ; Faria, M ; Besford, QA ; Ang, C-S ; Caruso, F ; Scheibel, T (American Chemical Society, 2020-05-20)
    In recent years, spider silk-based materials have attracted attention because of their biocompatibility, processability, and biodegradability. For their potential use in biomaterial applications, i.e., as drug delivery systems and implant coatings for tissue regeneration, it is vital to understand the interactions between the silk biomaterial surface and the biological environment. Like most polymeric carrier systems, spider silk material surfaces can adsorb proteins when in contact with blood, resulting in the formation of a biomolecular corona. Here, we assessed the effect of surface net charge of materials made of recombinant spider silk on the biomolecular corona composition. In-depth proteomic analysis of the biomolecular corona revealed that positively charged spider silk materials surfaces interacted predominantly with fibrinogen-based proteins. This fibrinogen enrichment correlated with blood clotting observed for both positively charged spider silk films and particles. In contrast, negative surface charges prevented blood clotting. Genetic engineering allows the fine-tuning of surface properties of the spider silk particles providing a whole set of recombinant spider silk proteins with different charges or peptide tags to be used for, for example, drug delivery or cell docking, and several of these were analyzed concerning the composition of their biomolecular corona. Taken together this study demonstrates how the surface net charge of recombinant spider silk surfaces affects the composition of the biomolecular corona, which in turn affects macroscopic effects such as fibrin formation and blood clotting.
  • Item
    Thumbnail Image
    Modular Assembly of Host-Guest Metal-Phenolic Networks Using Macrocyclic Building Blocks
    Pan, S ; Guo, R ; Bertleff-Zieschang, N ; Li, S ; Besford, QA ; Zhong, Q-Z ; Yun, G ; Zhang, Y ; Cavalieri, F ; Ju, Y ; Goudeli, E ; Richardson, JJ ; Caruso, F (Wiley, 2020-01-02)
    The manipulation of interfacial properties has broad implications for the development of high‐performance coatings. Metal–phenolic networks (MPNs) are an emerging class of responsive, adherent materials. Herein, host–guest chemistry is integrated with MPNs to modulate their surface chemistry and interfacial properties. Macrocyclic cyclodextrins (host) are conjugated to catechol or galloyl groups and subsequently used as components for the assembly of functional MPNs. The assembled cyclodextrin‐based MPNs are highly permeable (even to high molecular weight polymers: 250–500 kDa), yet they specifically and noncovalently interact with various functional guests (including small molecules, polymers, and carbon nanomaterials), allowing for modular and reversible control over interfacial properties. Specifically, by using either hydrophobic or hydrophilic guest molecules, the wettability of the MPNs can be readily tuned between superrepellency (>150°) and superwetting (ca. 0°).
  • Item
    Thumbnail Image
    The Biomolecular Corona in 2D and Reverse: Patterning Metal–Phenolic Networks on Proteins, Lipids, Nucleic Acids, Polysaccharides, and Fingerprints
    Yun, G ; Richardson, JJ ; Capelli, M ; Hu, Y ; Besford, QA ; Weiss, ACG ; Lee, H ; Choi, IS ; Gibson, BC ; Reineck, P ; Caruso, F (Wiley, 2020-01-03)
    The adsorption of biomolecules onto nanomaterials can alter the performance of the nanomaterials in vitro and in vivo. Recent studies have primarily focused on the protein “corona”, formed upon adsorption of proteins onto nanoparticles in biological fluids, which can change the biological fate of the nanoparticles. Conversely, interactions between nanomaterials and other classes of biomolecules namely, lipids, nucleic acids, and polysaccharides have received less attention despite their important roles in biology. A possible reason is the challenge associated with investigating biomolecule interactions with nanomaterials using current technologies. Herein, a protocol is developed for studying bio–nano interactions by depositing four classes of biomolecules (proteins, lipids, nucleic acids, and polysaccharides) and complex biological media (blood) onto planar substrates, followed by exposure to metal–phenolic network (MPN) complexes. The MPNs preferentially interact with the biomolecule over the inorganic substrate (glass), highlighting that patterned biomolecules can be used to engineer patterned MPNs. Subsequent formation of silver nanoparticles on the MPN films maintains the patterns and endows the films with unique reflectance and fluorescence properties, enabling visualization of latent fingerprints (i.e., invisible residual biomolecule patterns). This study demonstrates the potential complexity of the biomolecule corona as all classes of biomolecules can adsorb onto MPN-based nanomaterials.
  • Item
    Thumbnail Image
    Glycogen as a Building Block for Advanced Biological Materials
    Besford, QA ; Cavalieri, F ; Caruso, F (Wiley, 2020-05-07)
    Biological nanoparticles found in living systems possess distinct molecular architectures and diverse functions. Glycogen is a unique biological polysaccharide nanoparticle fabricated by nature through a bottom‐up approach. The biocatalytic synthesis of glycogen has evolved over time to form a nanometer‐sized dendrimer‐like structure (20–150 nm) with a highly branched surface and a dense core. This makes glycogen markedly different from other natural linear or branched polysaccharides and particularly attractive as a platform for biomedical applications. Glycogen is inherently biodegradable, nontoxic, and can be functionalized with diverse surface and internal motifs for enhanced biofunctional properties. Recently, there has been growing interest in glycogen as a natural alternative to synthetic polymers and nanoparticles in a range of applications. Herein, the recent literature on glycogen in the material‐based sciences, including its use as a constituent in biodegradable hydrogels and fibers, drug delivery vectors, tumor targeting and penetrating nanoparticles, immunomodulators, vaccine adjuvants, and contrast agents, is reviewed. The various methods of chemical functionalization and physical assembly of glycogen nanoparticles into multicomponent nanodevices, which advance glycogen toward a functional therapeutic nanoparticle from nature and back again, are discussed in detail.