Chemical and Biomedical Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 71
  • Item
    Thumbnail Image
    Surface Modification of Spider Silk Particles to Direct Biomolecular Corona Formation.
    Weiss, ACG ; Herold, HM ; Lentz, S ; Faria, M ; Besford, QA ; Ang, C-S ; Caruso, F ; Scheibel, T (American Chemical Society, 2020-05-20)
    In recent years, spider silk-based materials have attracted attention because of their biocompatibility, processability, and biodegradability. For their potential use in biomaterial applications, i.e., as drug delivery systems and implant coatings for tissue regeneration, it is vital to understand the interactions between the silk biomaterial surface and the biological environment. Like most polymeric carrier systems, spider silk material surfaces can adsorb proteins when in contact with blood, resulting in the formation of a biomolecular corona. Here, we assessed the effect of surface net charge of materials made of recombinant spider silk on the biomolecular corona composition. In-depth proteomic analysis of the biomolecular corona revealed that positively charged spider silk materials surfaces interacted predominantly with fibrinogen-based proteins. This fibrinogen enrichment correlated with blood clotting observed for both positively charged spider silk films and particles. In contrast, negative surface charges prevented blood clotting. Genetic engineering allows the fine-tuning of surface properties of the spider silk particles providing a whole set of recombinant spider silk proteins with different charges or peptide tags to be used for, for example, drug delivery or cell docking, and several of these were analyzed concerning the composition of their biomolecular corona. Taken together this study demonstrates how the surface net charge of recombinant spider silk surfaces affects the composition of the biomolecular corona, which in turn affects macroscopic effects such as fibrin formation and blood clotting.
  • Item
    Thumbnail Image
    Modulating the Selectivity and Stealth Properties of Ellipsoidal Polymersomes through a Multivalent Peptide Ligand Display
    Tjandra, KC ; Forest, CR ; Wong, CK ; Alcantara, S ; Kelly, HG ; Ju, Y ; Stenzel, MH ; McCarroll, JA ; Kavallaris, M ; Caruso, F ; Kent, SJ ; Thordarson, P (Wiley, 2020-05-19)
    There is a need for improved nanomaterials to simultaneously target cancer cells and avoid non‐specific clearance by phagocytes. An ellipsoidal polymersome system is developed with a unique tunable size and shape property. These particles are functionalized with in‐house phage‐display cell‐targeting peptide to target a medulloblastoma cell line in vitro. Particle association with medulloblastoma cells is modulated by tuning the peptide ligand density on the particles. These polymersomes has low levels of association with primary human blood phagocytes. The stealth properties of the polymersomes are further improved by including the peptide targeting moiety, an effect that is likely driven by the peptide protecting the particles from binding blood plasma proteins. Overall, this ellipsoidal polymersome system provides a promising platform to explore tumor cell targeting in vivo.
  • Item
    Thumbnail Image
    Understanding the Uptake of Nanomedicines at Different Stages of Brain Cancer Using a Modular Nanocarrier Platform and Precision Bispecific Antibodies
    Houston, ZH ; Bunt, J ; Chen, K-S ; Puttick, S ; Howard, CB ; Fletcher, NL ; Fuchs, AV ; Cui, J ; Ju, Y ; Cowin, G ; Song, X ; Boyd, AW ; Mahler, SM ; Richards, LJ ; Caruso, F ; Thurecht, KJ (American Chemical Society (ACS), 2020-05-27)
    Increasing accumulation and retention of nanomedicines within tumor tissue is a significant challenge, particularly in the case of brain tumors where access to the tumor through the vasculature is restricted by the blood–brain barrier (BBB). This makes the application of nanomedicines in neuro-oncology often considered unfeasible, with efficacy limited to regions of significant disease progression and compromised BBB. However, little is understood about how the evolving tumor–brain physiology during disease progression affects the permeability and retention of designer nanomedicines. We report here the development of a modular nanomedicine platform that, when used in conjunction with a unique model of how tumorigenesis affects BBB integrity, allows investigation of how nanomaterial properties affect uptake and retention in brain tissue. By combining different in vivo longitudinal imaging techniques (including positron emission tomography and magnetic resonance imaging), we have evaluated the retention of nanomedicines with predefined physicochemical properties (size and surface functionality) and established a relationship between structure and tissue accumulation as a function of a new parameter that measures BBB leakiness; this offers significant advancements in our ability to relate tumor accumulation of nanomedicines to more physiologically relevant parameters. Our data show that accumulation of nanomedicines in brain tumor tissue is better correlated with the leakiness of the BBB than actual tumor volume. This was evaluated by establishing brain tumors using a spontaneous and endogenously derived glioblastoma model providing a unique opportunity to assess these parameters individually and compare the results across multiple mice. We also quantitatively demonstrate that smaller nanomedicines (20 nm) can indeed cross the BBB and accumulate in tumors at earlier stages of the disease than larger analogues, therefore opening the possibility of developing patient-specific nanoparticle treatment interventions in earlier stages of the disease. Importantly, these results provide a more predictive approach for designing efficacious personalized nanomedicines based on a particular patient’s condition.
  • Item
    Thumbnail Image
    Injectable and Sprayable Polyphenol-Based Hydrogels for Controlling Hemostasis
    Geng, H ; Dai, Q ; Sun, H ; Zhuang, L ; Song, A ; Caruso, F ; Hao, J ; Cui, J (American Chemical Society, 2020-02-17)
    Injectable and sprayable hydrogels have attracted considerable attention for application in the biomedical field owing to their high moldability and efficiency in encapsulating therapeutics and cells. Herein, we report the spontaneous assembly of injectable and sprayable hydrogels via a one-step mixing of solutions of tannic acid (TA) and O-carboxymethyl chitosan (CMCS) without an external stimulus. The presence of 1,4-benzenediboronic acid (BDBA) improves the mechanical properties and reduces the gelation time of the resulting hydrogels. The hydrogels assemble via hydrogen bonds between TA and CMCS as well as via dynamic boronate ester bonds between TA and BDBA, as confirmed by Fourier transform infrared spectroscopy. Balancing the interactions between the three components (CMCS/TA/BDBA) is essential for the construction of the hydrogels. The moduli of the CMCS-TA-BDBA hydrogels initially increase as the amount of BDBA increases and decrease after reaching a maximum value at a BDBA-to-TA molar ratio of 3:1. The CMCS-TA-BDBA hydrogels with interconnected porous morphologies display rapid gelation (∼10 s), biocompatibility, self-healing, injectable, and sprayable abilities. In addition, the hydrogels can be used for hemostasis. The extent of bleeding in mouse livers treated with the hydrogels could be reduced extensively from 240 (nontreated mouse livers) to 55 mg (77% reduction). The reported hydrogels coupled with the combination of functionality and biological activity make them promising hemostatic materials for biomedical applications.
  • Item
    Thumbnail Image
    Engineering of Nebulized Metal-Phenolic Capsules for Controlled Pulmonary Deposition
    Ju, Y ; Cortez-Jugo, C ; Chen, J ; Wang, T-Y ; Mitchell, AJ ; Tsantikos, E ; Bertleff-Zieschang, N ; Lin, Y-W ; Song, J ; Cheng, Y ; Mettu, S ; Rahim, MA ; Pan, S ; Yun, G ; Hibbs, ML ; Yeo, LY ; Hagemeyer, CE ; Caruso, F (John Wiley & Sons, 2020-03-18)
    Particle-based pulmonary delivery has great potential for delivering inhalable therapeutics for local or systemic applications. The design of particles with enhanced aerodynamic properties can improve lung distribution and deposition, and hence the efficacy of encapsulated inhaled drugs. This study describes the nanoengineering and nebulization of metal–phenolic capsules as pulmonary carriers of small molecule drugs and macromolecular drugs in lung cell lines, a human lung model, and mice. Tuning the aerodynamic diameter by increasing the capsule shell thickness (from ≈100 to 200 nm in increments of ≈50 nm) through repeated film deposition on a sacrificial template allows precise control of capsule deposition in a human lung model, corresponding to a shift from the alveolar region to the bronchi as aerodynamic diameter increases. The capsules are biocompatible and biodegradable, as assessed following intratracheal administration in mice, showing >85% of the capsules in the lung after 20 h, but <4% remaining after 30 days without causing lung inflammation or toxicity. Single-cell analysis from lung digests using mass cytometry shows association primarily with alveolar macrophages, with >90% of capsules remaining nonassociated with cells. The amenability to nebulization, capacity for loading, tunable aerodynamic properties, high biocompatibility, and biodegradability make these capsules attractive for controlled pulmonary delivery.
  • Item
    Thumbnail Image
    Self-Assembly of a Metal-Phenolic Sorbent for Broad-Spectrum Metal Sequestration
    Rahim, MA ; Lin, G ; Tomanin, PP ; Ju, Y ; Barlow, A ; Bjornmalm, M ; Caruso, F (AMER CHEMICAL SOC, 2020-01-08)
    Metal contamination of water bodies from industrial effluents presents a global threat to the aquatic ecosystem. To address this challenge, metal sequestration via adsorption onto solid media has been explored extensively. However, existing sorbent systems typically involve energy-intensive syntheses and are applicable to a limited range of metals. Herein, a sorbent system derived from physically cross-linked polyphenolic networks using tannic acid and ZrIV ions has been explored for high-affinity, broad-spectrum metal sequestration. The network formation step (gelation) of the sorbent is complete within 3 min and requires no special apparatus. The key to this system design is the formation of a highly stable coordination network with an optimized metal–ligand ratio (1.2:1), affording access to a major fraction of the chelating sites in tannic acid for capturing diverse metal ions. This system is stable over a pH range of 1–9, thermally stable up to ∼200 °C, and exhibits a negative surface charge (at pH 5). The sorbent system effectively sequesters 28 metals in single- and multielement model wastes, with removal efficiencies exceeding 99%. Furthermore, it is demonstrated that this system can be processed as membrane coatings, thin films, or wet gels to capture metal ions and that both the sorbent and captured metal ions can be regenerated or directly used as composite catalysts.
  • Item
    Thumbnail Image
    Ordered Mesoporous Metal-Phenolic Network Particles.
    Lin, Z ; Zhou, J ; Cortez-Jugo, C ; Han, Y ; Ma, Y ; Pan, S ; Hanssen, E ; Richardson, JJ ; Caruso, F (American Chemical Society, 2020-01-08)
    Mesoporous metal-organic networks have attracted widespread interest owing to their potential applications in diverse fields including gas storage, separations, catalysis, and drug delivery. Despite recent advances, the synthesis of metal-organic networks with large and ordered mesochannels (>20 nm), which are important for loading, separating, and releasing macromolecules, remains a challenge. Herein, we report a templating strategy using sacrificial double cubic network polymer cubosomes (Im3̅m) to synthesize ordered mesoporous metal-phenolic particles (meso-MPN particles) with a large-pore (∼40 nm) single cubic network (Pm3̅m). We demonstrate that the large-pore network and the phenolic groups in the meso-MPN particles enable high loadings of various proteins (e.g., horseradish peroxidase (HRP), bovine hemoglobin, immunoglobulin G, and glucose oxidase (GOx)), which have different shapes, charges, and sizes (i.e., molecular weights spanning 44-160 kDa). For example, GOx loading in the meso-MPN particles was 362 mg g-1, which is ∼6-fold higher than the amount loaded in commercially available SiO2 particles with an average pore size of 50 nm. Furthermore, we show that HRP, when loaded in the meso-MPN particles (486 mg g-1), retained ∼82% activity of free HRP in solution and can be recycled at least five times with a minimal (∼13%) decrease in HRP activity, which exceeds HRP performance in 50 nm pore SiO2 particles (∼36% retained activity and ∼30% activity loss when recycled five times). Considering the wide selection of naturally abundant polyphenols (>8000 species) and metal ions available, the present cubosome-enabled strategy is expected to provide new avenues for designing a range of meso-MPN particles for various applications.
  • Item
    No Preview Available
    An Electrifying Choice for the 2019 Chemistry Nobel Prize: Goodenough, Whittingham, and Yoshino
    Bredas, J-L ; Buriak, JM ; Caruso, F ; Choi, K-S ; Korgel, BA ; Palacin, MR ; Persson, K ; Reichmanis, E ; Schuth, F ; Seshadri, R ; Ward, MD (AMER CHEMICAL SOC, 2019-11-12)
    As editors of a materials chemistry journal, we are thrilled at the awarding of the 2019 Nobel Prize in Chemistry to John B. Goodenough, M. Stanley Whittingham, and Akira Yoshino, for their contributions that have led to the modern lithium ion battery (Figure 1). As the Nobel Prize Committee states succinctly, “They created a rechargeable world.”(1) The commercial and societal rewards of experimental research typically require decades to reach fruition, and lithium ion batteries were no different, with crucial leads dating back to the 1960s, and even earlier.(2) Materials chemistry journals only emerged 30 years ago with the advent of Chemistry of Materials, the Journal of Materials Chemistry, and Advanced Materials in 1989. Much of the earlier work in battery materials appeared beforehand in electrochemistry, physics, and solid state journals. The key fundamental discovery underpinning the lithium ion battery was the understanding and application of ion intercalation, in this case,(3) lithium ions inserted between the layers in graphite, metal sulfides, and, eventually, oxides that were commercialized. This Nobel Prize was evenly split three ways because, as the Nobel committee correctly observed, the contributions of all three inventors were essential to the success of the commercialization of the lithium ion battery.
  • Item
    Thumbnail Image
    Expanding the Toolbox of Metal-Phenolic Networks via Enzyme-Mediated Assembly
    Zhong, Q-Z ; Richardson, JJ ; Li, S ; Zhang, W ; Ju, Y ; Li, J ; Pan, S ; Chen, J ; Caruso, F (Wiley, 2020-01-01)
    Functional coatings are of considerable interest because of their fundamental implications for interfacial assembly and promise for numerous applications. Universally adherent materials have recently emerged as versatile functional coatings; however, such coatings are generally limited to catechol, (ortho‐diphenol)‐containing molecules, as building blocks. Here, we report a facile, biofriendly enzyme‐mediated strategy for assembling a wide range of molecules (e.g., 14 representative molecules in this study) that do not natively have catechol moieties, including small molecules, peptides, and proteins, on various surfaces, while preserving the molecule's inherent function, such as catalysis (≈80 % retention of enzymatic activity for trypsin). Assembly is achieved by in situ conversion of monophenols into catechols via tyrosinase, where films form on surfaces via covalent and coordination cross‐linking. The resulting coatings are robust, functional (e.g., in protective coatings, biological imaging, and enzymatic catalysis), and versatile for diverse secondary surface‐confined reactions (e.g., biomineralization, metal ion chelation, and N‐hydroxysuccinimide conjugation).
  • Item
    Thumbnail Image
    Modular Assembly of Host-Guest Metal-Phenolic Networks Using Macrocyclic Building Blocks
    Pan, S ; Guo, R ; Bertleff-Zieschang, N ; Li, S ; Besford, QA ; Zhong, Q-Z ; Yun, G ; Zhang, Y ; Cavalieri, F ; Ju, Y ; Goudeli, E ; Richardson, JJ ; Caruso, F (Wiley, 2020-01-02)
    The manipulation of interfacial properties has broad implications for the development of high‐performance coatings. Metal–phenolic networks (MPNs) are an emerging class of responsive, adherent materials. Herein, host–guest chemistry is integrated with MPNs to modulate their surface chemistry and interfacial properties. Macrocyclic cyclodextrins (host) are conjugated to catechol or galloyl groups and subsequently used as components for the assembly of functional MPNs. The assembled cyclodextrin‐based MPNs are highly permeable (even to high molecular weight polymers: 250–500 kDa), yet they specifically and noncovalently interact with various functional guests (including small molecules, polymers, and carbon nanomaterials), allowing for modular and reversible control over interfacial properties. Specifically, by using either hydrophobic or hydrophilic guest molecules, the wettability of the MPNs can be readily tuned between superrepellency (>150°) and superwetting (ca. 0°).