Computing and Information Systems - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Location proof architectures
    SENEVIRATNE, JANAKA ( 2014)
    Upcoming location based services such as pay-as-you-drive insurances mandate verified locations. To enable such services Location Proof Architectures (LPAs) have been proposed in literature to verify or prove a user location. Specifically, an LPA allow a user (or a device on behalf of its user) to obtain a proof of its presence at a location from a trusted third party. In addition to guarding against cheating users who may claim false locations, another major concern in an LPA is to preserve user location privacy. To achieve this a user's identity and location data should be maintained separately in tandem with additional measures that avoid leaking sensitive identity and location data. We identify two types of location proof architectures: 1. sporadic location proofs for specific user locations and 2. continuous location proofs for user routes. In this thesis, we present two sporadic LPAs. Firstly, we propose an LPA where a user cannot falsely claim a location. Also, this LPA preserves user privacy by verifying a user identity and a location independently. Secondly, we propose an LPA that uses pseudonyms. We present a trusted third party free group pseudonym registering system for the LPA and show that our approach can achieve a guaranteed degree of privacy in the LPA. This thesis also introduces a framework for continuous LPA. In a continuos LPA, a verifier receives a sequence of location samples on a user route and assigns a degree of confidence with each possible user route. Specifically, we explain a stochastic model which associates a degree of confidence with a user route based on the distribution pattern of location samples.