Computing and Information Systems - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Resource provisioning in spot market-based cloud computing environments
    Recently, cloud computing providers have started offering unused computational resources in the form of dynamically priced virtual machines (VMs), also known as "spot instances". In spite of the apparent economical advantage, an intermittent nature is inherent to these biddable resources, which may cause VM unavailability. When an out-of-bid situation occurs, i.e. the current spot price goes above the user's maximum bid, spot instances are terminated by the provider without prior notice. This thesis presents a study on employing cloud computing spot instances as a means of executing computational jobs on cloud computing resources. We start by proposing a resource management and job scheduling policy, named SpotRMS, which addresses the problem of running deadline-constrained compute-intensive jobs on a pool of low-cost spot instances, while also exploiting variations in price and performance to run applications in a fast and economical way. This policy relies on job runtime estimations to decide what are the best types of spot instances to run each job and when jobs should run. It is able to minimise monetary spending and make sure jobs finish within their deadlines. We also propose an improvement for SpotRMS, that addresses the problem of running compute-intensive jobs on a pool of intermittent virtual machines, while also aiming to run applications in a fast and economical way. To mitigate potential unavailability periods, a multifaceted fault-aware resource provisioning policy is proposed. Our solution employs price and runtime estimation mechanisms, as well as three fault tolerance techniques, namely checkpointing, task duplication and migration. As a further improvement, we equip SpotRMS with prediction-assisted resource provisioning and bidding strategies. Our results demonstrate that both costs savings and strict adherence to deadlines can be achieved when properly combining and tuning the policy mechanisms. Especially, the fault tolerance mechanism that employs migration of VM state provides superior results in virtually all metrics. Finally, we employ a statistical model of spot price dynamics to artificially generate price patterns of varying volatility. We then analyse how SpotRMS performs in environments with highly variable price levels and more frequent changes. Fault tolerance is shown to be even more crucial in such scenarios.