Computing and Information Systems - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    The effects of sampling and semantic categories on large-scale supervised relation extraction
    Willy ( 2012)
    The purpose of relation extraction is to identify novel pairs of entities which are related by a pre-specified relation such as hypernym or synonym. The traditional approach to relation extraction is to building a dedicated system for a particular relation, meaning that significant effort is required to repurpose the approach to new relations. We propose a generic approach based on supervised learning, which provides a standardised process for performing relation extraction on different relations and domains. We explore the feasibility of the approach over a range of relations and corpora, focusing particularly on the development of a realistic evaluation methodology for relation extraction. In addition to this, we investigate the impact of semantic categories on extraction effectiveness.