Computing and Information Systems - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Improving the efficiency and capabilities of document structuring
    MARSHALL, ROBERT ( 2007)
    Natural language generation (NLG), the problem of creating human-readable documents by computer, is one of the major fields of research in computational linguistics The task of creating a document is extremely common in many fields of activity. Accordingly, there are many potential applications for NLG - almost any document creation task could potentially be automated by an NLG system. Advanced forms of NLG could also be used to generate a document in multiple languages, or as an output interface for other programs, which might ordinarily produce a less-manageable collection of data. They may also be able to create documents tailored to the needs of individual users. This thesis deals with document structure, a recent theory which describes those aspects of a document’s layout which affect its meaning. As well as its theoretical interest, it is a useful intermediate representation in the process of NLG. There is a well-defined process for generating a document structure using constraint programming. We show how this process can be made considerably more efficient. This in turn allows us to extend the document structuring task to allow for summarisation and finer control of the document layout. This thesis is organised as follows. Firstly, we review the necessary background material in both natural language processing and constraint programming.
  • Item
    Thumbnail Image
    Scaling conditional random fields for natural language processing
    Cohn, Trevor A ( 2007-01)
    This thesis deals with the use of Conditional Random Fields (CRFs; Lafferty et al. (2001)) for Natural Language Processing (NLP). CRFs are probabilistic models for sequence labelling which are particularly well suited to NLP. They have many compelling advantages over other popular models such as Hidden Markov Models and Maximum Entropy Markov Models (Rabiner, 1990; McCallum et al., 2001), and have been applied to a number of NLP tasks with considerable success (e.g., Sha and Pereira (2003) and Smith et al. (2005)). Despite their apparent success, CRFs suffer from two main failings. Firstly, they often over-fit the training sample. This is a consequence of their considerable expressive power, and can be limited by a prior over the model parameters (Sha and Pereira, 2003; Peng and McCallum, 2004). Their second failing is that the standard methods for CRF training are often very slow, sometimes requiring weeks of processing time. This efficiency problem is largely ignored in current literature, although in practise the cost of training prevents the application of CRFs to many new more complex tasks, and also prevents the use of densely connected graphs, which would allow for much richer feature sets. (For complete abstract open document)