Melbourne School of Health Sciences Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    No Preview Available
    Abstracts of the 2019 International Congress of the Parkinson's Disease and Movement Disorders®.
    Magee, M ; Tamplin, J ; Baker, F ; MORRIS, M ; Vogel, A (Wiley, 2019-10)
  • Item
    Thumbnail Image
    Temporal dynamics of circadian phase shifting response to consecutive night shifts in healthcare workers: role of light-dark exposure
    Stone, JE ; Sletten, TL ; Magee, M ; Ganesan, S ; Mulhall, MD ; Collins, A ; Howard, M ; Lockley, SW ; Rajaratnam, SMW (WILEY, 2018-06-15)
    KEY POINTS: Shift work is highly prevalent and is associated with significant adverse health impacts. There is substantial inter-individual variability in the way the circadian clock responds to changing shift cycles. The mechanisms underlying this variability are not well understood. We tested the hypothesis that light-dark exposure is a significant contributor to this variability; when combined with diurnal preference, the relative timing of light exposure accounted for 71% of individual variability in circadian phase response to night shift work. These results will drive development of personalised approaches to manage circadian disruption among shift workers and other vulnerable populations to potentially reduce the increased risk of disease in these populations. ABSTRACT: Night shift workers show highly variable rates of circadian adaptation. This study examined the relationship between light exposure patterns and the magnitude of circadian phase resetting in response to night shift work. In 21 participants (nursing and medical staff in an intensive care unit) circadian phase was measured using 6-sulphatoxymelatonin at baseline (day/evening shifts or days off) and after 3-4 consecutive night shifts. Daily light exposure was examined relative to individual circadian phase to quantify light intensity in the phase delay and phase advance portions of the light phase response curve (PRC). There was substantial inter-individual variability in the direction and magnitude of phase shift after three or four consecutive night shifts (mean phase delay -1:08 ± 1:31 h; range -3:43 h delay to +3:07 h phase advance). The relative difference in the distribution of light relative to the PRC combined with diurnal preference accounted for 71% of the variability in phase shift. Regression analysis incorporating these factors estimated phase shift to within ±60 min in 85% of participants. No participants met criteria for partial adaptation to night work after three or four consecutive night shifts. Our findings provide evidence that the phase resetting that does occur is based on individual light exposure patterns relative to an individual's baseline circadian phase. Thus, a 'one size fits all' approach to promoting adaptation to shift work using light therapy, implemented without knowledge of circadian phase, may not be efficacious for all individuals.
  • Item
    Thumbnail Image
    Generalizability of A Neural Network Model for Circadian Phase Prediction in Real-World Conditions
    Stone, JE ; Phillips, AJK ; Ftouni, S ; Magee, M ; Howard, M ; Lockley, SW ; Sletten, TL ; Anderson, C ; Rajaratnam, SMW ; Postnova, S (NATURE PORTFOLIO, 2019-07-29)
    A neural network model was previously developed to predict melatonin rhythms accurately from blue light and skin temperature recordings in individuals on a fixed sleep schedule. This study aimed to test the generalizability of the model to other sleep schedules, including rotating shift work. Ambulatory wrist blue light irradiance and skin temperature data were collected in 16 healthy individuals on fixed and habitual sleep schedules, and 28 rotating shift workers. Artificial neural network models were trained to predict the circadian rhythm of (i) salivary melatonin on a fixed sleep schedule; (ii) urinary aMT6s on both fixed and habitual sleep schedules, including shift workers on a diurnal schedule; and (iii) urinary aMT6s in rotating shift workers on a night shift schedule. To determine predicted circadian phase, center of gravity of the fitted bimodal skewed baseline cosine curve was used for melatonin, and acrophase of the cosine curve for aMT6s. On a fixed sleep schedule, the model predicted melatonin phase to within ± 1 hour in 67% and ± 1.5 hours in 100% of participants, with mean absolute error of 41 ± 32 minutes. On diurnal schedules, including shift workers, the model predicted aMT6s acrophase to within ± 1 hour in 66% and ± 2 hours in 87% of participants, with mean absolute error of 63 ± 67 minutes. On night shift schedules, the model predicted aMT6s acrophase to within ± 1 hour in 42% and ± 2 hours in 53% of participants, with mean absolute error of 143 ± 155 minutes. Prediction accuracy was similar when using either 1 (wrist) or 11 skin temperature sensor inputs. These findings demonstrate that the model can predict circadian timing to within ± 2 hours for the vast majority of individuals on diurnal schedules, using blue light and a single temperature sensor. However, this approach did not generalize to night shift conditions.
  • Item
    Thumbnail Image
    Application of a Limit-Cycle Oscillator Model for Prediction of Circadian Phase in Rotating Night Shift Workers
    Stone, JE ; Aubert, XL ; Maass, H ; Phillips, AJK ; Magee, M ; Howard, ME ; Lockley, SW ; Rajaratnam, SMW ; Sletten, TL (NATURE PORTFOLIO, 2019-07-30)
    Practical alternatives to gold-standard measures of circadian timing in shift workers are needed. We assessed the feasibility of applying a limit-cycle oscillator model of the human circadian pacemaker to estimate circadian phase in 25 nursing and medical staff in a field setting during a transition from day/evening shifts (diurnal schedule) to 3-5 consecutive night shifts (night schedule). Ambulatory measurements of light and activity recorded with wrist actigraphs were used as inputs into the model. Model estimations were compared to urinary 6-sulphatoxymelatonin (aMT6s) acrophase measured on the diurnal schedule and last consecutive night shift. The model predicted aMT6s acrophase with an absolute mean error of 0.69 h on the diurnal schedule (SD = 0.94 h, 80% within ±1 hour), and 0.95 h on the night schedule (SD = 1.24 h, 68% within ±1 hour). The aMT6s phase shift from diurnal to night schedule was predicted to within ±1 hour in 56% of individuals. Our findings indicate the model can be generalized to a shift work setting, although prediction of inter-individual variability in circadian phase shift during night shifts was limited. This study provides the basis for further adaptation and validation of models for predicting circadian phase in rotating shift workers.
  • Item
    Thumbnail Image
    The Impact of Shift Work on Sleep, Alertness and Performance in Healthcare Workers
    Ganesan, S ; Magee, M ; Stone, JE ; Mulhall, MD ; Collins, A ; Howard, ME ; Lockley, SW ; Rajaratnam, SMW ; Sletten, TL (NATURE PORTFOLIO, 2019-03-15)
    Shift work is associated with impaired alertness and performance due to sleep loss and circadian misalignment. This study examined sleep between shift types (day, evening, night), and alertness and performance during day and night shifts in 52 intensive care workers. Sleep and wake duration between shifts were evaluated using wrist actigraphs and diaries. Subjective sleepiness (Karolinska Sleepiness Scale, KSS) and Psychomotor Vigilance Test (PVT) performance were examined during day shift, and on the first and subsequent night shifts (3rd, 4th or 5th). Circadian phase was assessed using urinary 6-sulphatoxymelatonin rhythms. Sleep was most restricted between consecutive night shifts (5.74 ± 1.30 h), consecutive day shifts (5.83 ± 0.92 h) and between evening and day shifts (5.20 ± 0.90 h). KSS and PVT mean reaction times were higher at the end of the first and subsequent night shift compared to day shift, with KSS highest at the end of the first night. On nights, working during the circadian acrophase of the urinary melatonin rhythm led to poorer outcomes on the KSS and PVT. In rotating shift workers, early day shifts can be associated with similar sleep restriction to night shifts, particularly when scheduled immediately following an evening shift. Alertness and performance remain most impaired during night shifts given the lack of circadian adaptation to night work. Although healthcare workers perceive themselves to be less alert on the first night shift compared to subsequent night shifts, objective performance is equally impaired on subsequent nights.
  • Item
    Thumbnail Image
    Motor speech and non-motor language endophenotypes of Parkinson's disease
    Magee, M ; Copland, D ; Vogel, AP (TAYLOR & FRANCIS LTD, 2019-12-02)
    Introduction: Idiopathic Parkinson's Disease (PD) results in a range of motor and non-motor impairments. Clinical diagnosis commonly occurs after substantial neurophysiological damage limiting the opportunity for neuroprotective treatments. Uncovering sensitive objective markers with the capacity to detect pre-symptomatic disease and track disease progression is therefore a priority. Speech may provide an ideal proxy marker for PD; a quantifiable biometric that displays salient changes in early disease and appears to evolve with disease progression.Areas covered: This review describes the endophenotype of speech, voice, cognition and language modalities in PD and investigates the speech as a 'proxy marker' of PD disease state.Expert opinion: Detailed characterization at different disease stages are needed and must incorporate longitudinal assessment to capture small but significant changes in speech, voice, cognition and language modalities within patient changes over time. Advances in technology are leading to new opportunities for acquiring data remotely and more frequently, offering more ecologically valid testing environments. Combined with automated signal processing and analysis, symptoms may also be tracked in-home readily. Features extracted may provide a 'proxy marker' for early identification of PD and objective monitoring of disease progression.
  • Item
    Thumbnail Image
    Efficacy of melatonin with behavioural sleep-wake scheduling for delayed sleep-wake phase disorder: A double-blind, randomised clinical trial
    Sletten, TL ; Magee, M ; Murray, JM ; Gordon, CJ ; Lovato, N ; Kennaway, DJ ; Gwini, SM ; Bartlett, DJ ; Lockley, SW ; Lace, LC ; Grunstein, RR ; Rajaratnam, SMW ; Peiris, D (PUBLIC LIBRARY SCIENCE, 2018-06)
    BACKGROUND: Delayed Sleep-Wake Phase Disorder (DSWPD) is characterised by sleep initiation insomnia when attempting sleep at conventional times and difficulty waking at the required time for daytime commitments. Although there are published therapeutic guidelines for the administration of melatonin for DSWPD, to our knowledge, randomised controlled trials are lacking. This trial tested the efficacy of 0.5 mg melatonin, combined with behavioural sleep-wake scheduling, for improving sleep initiation in clinically diagnosed DSWPD patients with a delayed endogenous melatonin rhythm relative to patient-desired (or -required) bedtime (DBT). METHODS: This randomised, placebo-controlled, double-blind clinical trial was conducted in an Australian outpatient DSWPD population. Following 1-wk baseline, clinically diagnosed DSWPD patients with delayed melatonin rhythm relative to DBT (salivary dim light melatonin onset [DLMO] after or within 30 min before DBT) were randomised to 4-wk treatment with 0.5 mg fast-release melatonin or placebo 1 h before DBT for at least 5 consecutive nights per week. All patients received behavioural sleep-wake scheduling, consisting of bedtime scheduled at DBT. The primary outcome was actigraphic sleep onset time. Secondary outcomes were sleep efficiency in the first third of time in bed (SE T1) on treatment nights, subjective sleep-related daytime impairment (Patient Reported Outcomes Measurement Information System [PROMIS]), PROMIS sleep disturbance, measures of daytime sleepiness, clinician-rated change in illness severity, and DLMO time. FINDINGS: Between September 13, 2012 and September 1, 2014, 307 participants were registered; 116 were randomised to treatment (intention-to-treat n = 116; n = 62 males; mean age, 29.0 y). Relative to baseline and compared to placebo, sleep onset occurred 34 min earlier (95% confidence interval [CI] -60 to -8) in the melatonin group. SE T1 increased; PROMIS sleep-related impairment, PROMIS sleep disturbance, insomnia severity, and functional disability decreased; and a greater proportion of patients showed more than minimal clinician-rated improvement following melatonin treatment (52.8%) compared to placebo (24.0%) (P < 0.05). The groups did not differ in the number of nights treatment was taken per protocol. Post-treatment DLMO assessed in a subset of patients (n = 43) was not significantly different between groups. Adverse events included light-headedness, daytime sleepiness, and decreased libido, although rates were similar between treatment groups. The clinical benefits or safety of melatonin with long-term treatment were not assessed, and it remains unknown whether the same treatment regime would benefit patients experiencing DSWPD sleep symptomology without a delay in the endogenous melatonin rhythm. CONCLUSIONS: In this study, melatonin treatment 1 h prior to DBT combined with behavioural sleep-wake scheduling was efficacious for improving objective and subjective measures of sleep disturbances and sleep-related impairments in DSWPD patients with delayed circadian phase relative to DBT. Improvements were achieved largely through the sleep-promoting effects of melatonin, combined with behavioural sleep-wake scheduling. TRIAL REGISTRATION: This trial was registered with the Australian New Zealand Clinical Trials Registry, ACTRN12612000425897.
  • Item
    Thumbnail Image
    The pupillary light reflex distinguishes between circadian and non-circadian delayed sleep phase disorder (DSPD) phenotypes in young adults
    McGlashan, EM ; Burns, AC ; Murray, JM ; Sletten, TL ; Magee, M ; Rajaratnam, SMW ; Cain, SW ; Yamazaki, S (PUBLIC LIBRARY SCIENCE, 2018-09-27)
    This study investigated the utility of the pupillary light reflex as a method of differentiating DSPD patients with delayed melatonin timing relative to desired/required sleep time (circadian type) and those with non-delayed melatonin timing (non-circadian type). All participants were young adults, with a total of 14 circadian DSPD patients (M = 28.14, SD = 5.26), 12 non-circadian DSPD patients (M = 29.42, SD = 11.51) and 51 healthy controls (M = 21.47 SD = 3.16) completing the protocol. All participants were free of central nervous system acting medications and abstained from caffeine and alcohol on the day of the assessment. Two pupillary light reflex measurements were completed by each participant, one with a 1s dim (~10 lux) light exposure, and one with a 1s bright (~1500 lux) light exposure. Circadian DSPD patients showed a significantly faster pupillary light reflex than both non-circadian DSPD patients and healthy controls. Non-circadian patients and healthy controls did not differ significantly. Receiver operating characteristic curves were generated to determine the utility of mean and maximum constriction velocity in differentiating the two DSPD phenotypes, and these demonstrated high levels of sensitivity (69.23--100%) and specificity (66.67-91.67%) at their optimal cut offs. The strongest predictor of DSPD phenotype was the mean constriction velocity to bright light (AUC = 0.87). These results support the potential for the pupillary light reflex to clinically differentiate between DSPD patients with normal vs. delayed circadian timing relative to desired bedtime, without the need for costly and time-consuming circadian assessments.