Melbourne Medical School Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 33
  • Item
    No Preview Available
    Human immune responses to infective stage larval-specific chitinase of filarial parasite, Onchocerca volvulus, Ov-CHI-1.
    Wu, Y ; Egerton, G ; McCarthy, JS ; Nutman, TB ; Bianco, AE (Springer Science and Business Media LLC, 2003-03-14)
    BACKGROUND: Ov-CHI-1 is a chitinase specifically expressed in the infective stage larvae of the human filarial parasite Onchocerca volvulus. Evidence has show that it could be a vaccine candidate, however, there is no data available regarding the immunological status of people naturally exposed to infective stage larvae and thus provoked by this antigen. METHOD: We analysed the Ov-CHI-1-specific immune response present in four endemic foci of human onchocerciasis (Ecuador, Nigeria, Togo and Cameroon) by enzyme-linked immunosorbent assays and T-cell proliferation assays. RESULTS: In these foci of infection, antibodies to Ov-CHI-1 were found to be present in only 22% of individuals from Ecuador, but were detected in 42-62% of infected individuals in the three foci from West Africa (Nigeria, Togo and Cameroon). There was found to be no relationship between antibody level and age, gender, or infection intensity as indicated by microfilarial density and numbers of skin nodules. The isotype response to Ov-CHI-1 was dominated by the presence of IgG3, IgG1 was present to a lesser extent. Our results show a positive correlation between N- and C-termini of Ov-CHI-1 in their ability to provoke humoral and cellular immune responses in the human. Peripheral blood mononuclear cell (PBMC) proliferative responses to Ov-CHI-1 when assayed, were found to be significantly higher in the individuals from endemic areas and there was a statistically elevated response to Ov-CHI-1 in the infected individuals when compared to putative immune individuals. CONCLUSION: Ov-CHI-1 is an antigen that we have found strongly induces both humoral and cellular immune responses in humans.
  • Item
    No Preview Available
    A Large Proportion of P. falciparum Isolates in the Amazon Region of Peru Lack pfhrp2 and pfhrp3: Implications for Malaria Rapid Diagnostic Tests
    Gamboa, D ; Ho, M-F ; Bendezu, J ; Torres, K ; Chiodini, PL ; Barnwell, JW ; Incardona, S ; Perkins, M ; Bell, D ; McCarthy, J ; Cheng, Q ; Bjorkman, A (PUBLIC LIBRARY SCIENCE, 2010-01-25)
    BACKGROUND: Malaria rapid diagnostic tests (RDTs) offer significant potential to improve the diagnosis of malaria, and are playing an increasing role in malaria case management, control and elimination. Peru, along with other South American countries, is moving to introduce malaria RDTs as components of malaria control programmes supported by the Global Fund for AIDS, TB and malaria. The selection of the most suitable malaria RDTs is critical to the success of the programmes. METHODS: Eight of nine microscopy positive P. falciparum samples collected in Iquitos, Peru tested negative or weak positive using HRP2-detecting RDTs. These samples were tested for the presence of pfhrp2 and pfhrp3 and their flanking genes by PCR, as well as the presence of HRP proteins by ELISA. To investigate for geographic extent of HRP-deleted parasites and their temporal occurrence a retrospective study was undertaken on 148 microscopy positive P. falciparum samples collected in different areas of the Amazon region of Peru. FINDINGS: Eight of the nine isolates lacked the pfhrp2 and/or pfhrp3 genes and one or both flanking genes, and the absence of HRP was confirmed by ELISA. The retrospective study showed that 61 (41%) and 103 (70%) of the 148 samples lacked the pfhrp2 or pfhrp3 genes respectively, with 32 (21.6%) samples lacking both hrp genes. CONCLUSIONS: This is the first documentation of P. falciparum field isolates lacking pfhrp2 and/or pfhrp3. The high frequency and wide distribution of different parasites lacking pfhrp2 and/or pfhrp3 in widely dispersed areas in the Peruvian Amazon implies that malaria RDTs targeting HRP2 will fail to detect a high proportion of P. falciparum in malaria-endemic areas of Peru and should not be used. RDTs detecting parasite LDH or aldolase and quality microscopy should be use for malaria diagnosis in this region. There is an urgent need for investigation of the abundance and geographic distribution of these parasites in Peru and neighbouring countries.
  • Item
    Thumbnail Image
    Antibody Responses to Sarcoptes scabiei Apolipoprotein in a Porcine Model: Relevance to Immunodiagnosis of Recent Infection
    Rampton, M ; Walton, SF ; Holt, DC ; Pasay, C ; Kelly, A ; Currie, BJ ; McCarthy, JS ; Mounsey, KE ; Braga, ÉM (PUBLIC LIBRARY SCIENCE, 2013-06-06)
    No commercial immunodiagnostic tests for human scabies are currently available, and existing animal tests are not sufficiently sensitive. The recombinant Sarcoptes scabiei apolipoprotein antigen Sar s 14.3 is a promising immunodiagnostic, eliciting high levels of IgE and IgG in infected people. Limited data are available regarding the temporal development of antibodies to Sar s 14.3, an issue of relevance in terms of immunodiagnosis. We utilised a porcine model to prospectively compare specific antibody responses to a primary infestation by ELISA, to Sar s 14.3 and to S. scabiei whole mite antigen extract (WMA). Differences in the antibody profile between antigens were apparent, with Sar s 14.3 responses detected earlier, and declining significantly after peak infestation compared to WMA. Both antigens resulted in >90% diagnostic sensitivity from weeks 8-16 post infestation. These data provide important information on the temporal development of humoral immune responses in scabies and further supports the development of recombinant antigen based immunodiagnostic tests for recent scabies infestations.
  • Item
    Thumbnail Image
    Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report
    von Seidlein, L ; Auburn, S ; Espino, F ; Shanks, D ; Cheng, Q ; McCarthy, J ; Baird, K ; Moyes, C ; Howes, R ; Menard, D ; Bancone, G ; Winasti-Satyahraha, A ; Vestergaard, LS ; Green, J ; Domingo, G ; Yeung, S ; Price, R (BMC, 2013-03-27)
    The diagnosis and management of glucose-6-phosphate dehydrogenase (G6PD) deficiency is a crucial aspect in the current phases of malaria control and elimination, which will require the wider use of 8-aminoquinolines for both reducing Plasmodium falciparum transmission and achieving the radical cure of Plasmodium vivax. 8-aminoquinolines, such as primaquine, can induce severe haemolysis in G6PD-deficient individuals, potentially creating significant morbidity and undermining confidence in 8-aminoquinoline prescription. On the other hand, erring on the side of safety and excluding large numbers of people with unconfirmed G6PD deficiency from treatment with 8-aminoquinolines will diminish the impact of these drugs. Estimating the remaining G6PD enzyme activity is the most direct, accessible, and reliable assessment of the phenotype and remains the gold standard for the diagnosis of patients who could be harmed by the administration of primaquine. Genotyping seems an unambiguous technique, but its use is limited by cost and the large range of recognized G6PD genotypes. A number of enzyme activity assays diagnose G6PD deficiency, but they require a cold chain, specialized equipment, and laboratory skills. These assays are impractical for care delivery where most patients with malaria live. Improvements to the diagnosis of G6PD deficiency are required for the broader and safer use of 8-aminoquinolines to kill hypnozoites, while lower doses of primaquine may be safely used to kill gametocytes without testing. The discussions and conclusions of a workshop conducted in Incheon, Korea in May 2012 to review key knowledge gaps in G6PD deficiency are reported here.
  • Item
    Thumbnail Image
    Neglected Tropical Diseases of Oceania: Review of Their Prevalence, Distribution, and Opportunities for Control
    Kline, K ; McCarthy, JS ; Pearson, M ; Loukas, A ; Hotez, PJ ; Brooker, S (PUBLIC LIBRARY SCIENCE, 2013-01)
    Among Oceania's population of 35 million people, the greatest number living in poverty currently live in Papua New Guinea (PNG), Fiji, Vanuatu, and the Solomon Islands. These impoverished populations are at high risk for selected NTDs, including Necator americanus hookworm infection, strongyloidiasis, lymphatic filariasis (LF), balantidiasis, yaws, trachoma, leprosy, and scabies, in addition to outbreaks of dengue and other arboviral infections including Japanese encephalitis virus infection. PNG stands out for having the largest number of cases and highest prevalence for most of these NTDs. However, Australia's Aboriginal population also suffers from a range of significant NTDs. Through the Pacific Programme to Eliminate Lymphatic Filariasis, enormous strides have been made in eliminating LF in Oceania through programs of mass drug administration (MDA), although LF remains widespread in PNG. There are opportunities to scale up MDA for PNG's major NTDs, which could be accomplished through an integrated package that combines albendazole, ivermectin, diethylcarbamazine, and azithromycin, in a program of national control. Australia's Aboriginal population may benefit from appropriately integrated MDA into primary health care systems. Several emerging viral NTDs remain important threats to the region.
  • Item
    Thumbnail Image
    Relapse of imported Plasmodium vivax malaria is related to primaquine dose: a retrospective study
    Townell, N ; Looke, D ; McDougall, D ; McCarthy, JS (BIOMED CENTRAL LTD, 2012-06-22)
    BACKGROUND: Relapsing Plasmodium vivax infection results in significant morbidity for the individual and is a key factor in transmission. Primaquine remains the only licensed drug for prevention of relapse. To minimize relapse rates, treatment guidelines have recently been revised to recommend an increased primaquine dose, aiming to achieve a cumulative dose of ≥6 mg/kg, i.e. ≥420 mg in a 70 kg patient. The aims of this study were to characterize the epidemiology of P. vivax infection imported into Queensland Australia, to determine the rates of relapse, to investigate the use of primaquine therapy, and its efficacy in the prevention of relapse. METHODS: A retrospective study was undertaken of laboratory confirmed P. vivax infection presenting to the two major tertiary hospitals in Queensland, Australia between January 1999 and January 2011.Primaquine dosing was classified as no dose, low dose (<420 mg), high dose (≥420 mg), or unknown. The dose of primaquine prescribed to patients who subsequently relapsed that prescribed to patients who did not relapse. RESULTS: Twenty relapses occurred following 151 primary episodes of P. vivax infection (13.2%). Relapses were confirmed among 3/21 (14.2%), 9/50 (18.0%), 1/54 (1.9%) and 7/18 (38.9%) of patients administered no dose, low dose, high dose and unknown primaquine dose respectively. High dose primaquine therapy was associated with a significantly lower rate of relapse compared to patients who were prescribed low dose therapy (OR 11.6, 95% CI 1.5-519, p = 0.005). CONCLUSIONS: Relapse of P. vivax infection is more likely in patients who received low dose primaquine therapy. This study supports the recommendations that high dose primaquine therapy is necessary to minimize relapse of P. vivax malaria.
  • Item
    Thumbnail Image
    Modelling the dynamics of Plasmodium falciparum histidine-rich protein 2 in human malaria to better understand malaria rapid diagnostic test performance
    Marquart, L ; Butterworth, A ; McCarthy, JS ; Gatton, ML (BMC, 2012-03-19)
    BACKGROUND: Effective diagnosis of malaria is a major component of case management. Rapid diagnostic tests (RDTs) based on Plasmodium falciparumhistidine-rich protein 2 (PfHRP2) are popular for diagnosis of this most virulent malaria infection. However, concerns have been raised about the longevity of the PfHRP2 antigenaemia following curative treatment in endemic regions. METHODS: A model of PfHRP2 production and decay was developed to mimic the kinetics of PfHRP2 antigenaemia during infections. Data from two human infection studies was used to fit the model, and to investigate PfHRP2 kinetics. Four malaria RDTs were assessed in the laboratory to determine the minimum detectable concentration of PfHRP2. RESULTS: Fitting of the PfHRP2 dynamics model indicated that in malaria naïve hosts, P. falciparum parasites of the 3D7 strain produce 1.4 × 10⁻¹³ g of PfHRP2 per parasite per replication cycle. The four RDTs had minimum detection thresholds between 6.9 and 27.8 ng/mL. Combining these detection thresholds with the kinetics of PfHRP2, it is predicted that as few as 8 parasites/μL may be required to maintain a positive RDT in a chronic infection. CONCLUSIONS: The results of the model indicate that good quality PfHRP2-based RDTs should be able to detect parasites on the first day of symptoms, and that the persistence of the antigen will cause the tests to remain positive for at least seven days after treatment. The duration of a positive test result following curative treatment is dependent on the duration and density of parasitaemia prior to treatment and the presence and affinity of anti-PfHRP2 antibodies.
  • Item
    Thumbnail Image
    A Research Agenda for Helminth Diseases of Humans: Diagnostics for Control and Elimination Programmes
    McCarthy, JS ; Lustigman, S ; Yang, G-J ; Barakat, RM ; Garcia, HH ; Sripa, B ; Willingham, AL ; Prichard, RK ; Basanez, M-G ; Brooker, S (PUBLIC LIBRARY SCIENCE, 2012-04)
    Diagnostic tools appropriate for undertaking interventions to control helminth infections are key to their success. Many diagnostic tests for helminth infection have unsatisfactory performance characteristics and are not well suited for use in the parasite control programmes that are being increasingly implemented. Although the application of modern laboratory research techniques to improve diagnostics for helminth infection has resulted in some technical advances, uptake has not been uniform. Frequently, pilot or proof of concept studies of promising diagnostic technologies have not been followed by much needed product development, and in many settings diagnosis continues to rely on insensitive and unsatisfactory parasitological or serodiagnostic techniques. In contrast, PCR-based xenomonitoring of arthropod vectors, and use of parasite recombinant proteins as reagents for serodiagnostic tests, have resulted in critical advances in the control of specific helminth parasites. The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR) was given the mandate to review helminthiases research and identify research priorities and gaps. In this review, the diagnostic technologies relevant to control of helminth infections, either available or in development, are reviewed. Critical gaps are identified and opportunities to improve needed technologies are discussed.
  • Item
    Thumbnail Image
    A Research Agenda for Helminth Diseases of Humans: Intervention for Control and Elimination
    Prichard, RK ; Basanez, M-G ; Boatin, BA ; McCarthy, JS ; Garcia, HH ; Yang, G-J ; Sripa, B ; Lustigman, S ; Brooker, S (PUBLIC LIBRARY SCIENCE, 2012-04)
    Recognising the burden helminth infections impose on human populations, and particularly the poor, major intervention programmes have been launched to control onchocerciasis, lymphatic filariasis, soil-transmitted helminthiases, schistosomiasis, and cysticercosis. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A summary of current helminth control initiatives is presented and available tools are described. Most of these programmes are highly dependent on mass drug administration (MDA) of anthelmintic drugs (donated or available at low cost) and require annual or biannual treatment of large numbers of at-risk populations, over prolonged periods of time. The continuation of prolonged MDA with a limited number of anthelmintics greatly increases the probability that drug resistance will develop, which would raise serious problems for continuation of control and the achievement of elimination. Most initiatives have focussed on a single type of helminth infection, but recognition of co-endemicity and polyparasitism is leading to more integration of control. An understanding of the implications of control integration for implementation, treatment coverage, combination of pharmaceuticals, and monitoring is needed. To achieve the goals of morbidity reduction or elimination of infection, novel tools need to be developed, including more efficacious drugs, vaccines, and/or antivectorial agents, new diagnostics for infection and assessment of drug efficacy, and markers for possible anthelmintic resistance. In addition, there is a need for the development of new formulations of some existing anthelmintics (e.g., paediatric formulations). To achieve ultimate elimination of helminth parasites, treatments for the above mentioned helminthiases, and for taeniasis and food-borne trematodiases, will need to be integrated with monitoring, education, sanitation, access to health services, and where appropriate, vector control or reduction of the parasite reservoir in alternative hosts. Based on an analysis of current knowledge gaps and identification of priorities, a research and development agenda for intervention tools considered necessary for control and elimination of human helminthiases is presented, and the challenges to be confronted are discussed.
  • Item
    Thumbnail Image
    A Research Agenda for Helminth Diseases of Humans: Modelling for Control and Elimination
    Basanez, M-G ; McCarthy, JS ; French, MD ; Yang, G-J ; Walker, M ; Gambhir, M ; Prichard, RK ; Churcher, TS ; Zhou, X-N (PUBLIC LIBRARY SCIENCE, 2012-04)
    Mathematical modelling of helminth infections has the potential to inform policy and guide research for the control and elimination of human helminthiases. However, this potential, unlike in other parasitic and infectious diseases, has yet to be realised. To place contemporary efforts in a historical context, a summary of the development of mathematical models for helminthiases is presented. These efforts are discussed according to the role that models can play in furthering our understanding of parasite population biology and transmission dynamics, and the effect on such dynamics of control interventions, as well as in enabling estimation of directly unobservable parameters, exploration of transmission breakpoints, and investigation of evolutionary outcomes of control. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A research and development agenda for helminthiasis modelling is proposed based on identified gaps that need to be addressed for models to become useful decision tools that can support research and control operations effectively. This agenda includes the use of models to estimate the impact of large-scale interventions on infection incidence; the design of sampling protocols for the monitoring and evaluation of integrated control programmes; the modelling of co-infections; the investigation of the dynamical relationship between infection and morbidity indicators; the improvement of analytical methods for the quantification of anthelmintic efficacy and resistance; the determination of programme endpoints; the linking of dynamical helminth models with helminth geostatistical mapping; and the investigation of the impact of climate change on human helminthiases. It is concluded that modelling should be embedded in helminth research, and in the planning, evaluation, and surveillance of interventions from the outset. Modellers should be essential members of interdisciplinary teams, propitiating a continuous dialogue with end users and stakeholders to reflect public health needs in the terrain, discuss the scope and limitations of models, and update biological assumptions and model outputs regularly. It is highlighted that to reach these goals, a collaborative framework must be developed for the collation, annotation, and sharing of databases from large-scale anthelmintic control programmes, and that helminth modellers should join efforts to tackle key questions in helminth epidemiology and control through the sharing of such databases, and by using diverse, yet complementary, modelling approaches.