Melbourne Medical School Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Validating Eaton's Hypothesis: Cubane as a Benzene Bioisostere (vol 55, pg 3580, 2016)
    Chalmers, BA ; Xing, H ; Houston, S ; Clark, C ; Ghassabian, S ; Kuo, A ; Cao, B ; Reitsma, A ; Murray, C-EP ; Stok, JE ; Boyle, GM ; Pierce, CJ ; Littler, SW ; Winkler, DA ; Bernhardt, PV ; Pasay, C ; De Voss, JJ ; McCarthy, J ; Parsons, PG ; Walter, GH ; Smith, MT ; Cooper, HM ; Nilsson, SK ; Tsanaktsidis, J ; Savage, GP ; Williams, CM (WILEY-V C H VERLAG GMBH, 2018-07-09)
  • Item
    Thumbnail Image
    Within-host modeling of blood-stage malaria
    Khoury, DS ; Aogo, R ; Randriafanomezantsoa-Radohery, G ; McCaw, JM ; Simpson, JA ; McCarthy, JS ; Haque, A ; Cromer, D ; Davenport, MP (WILEY, 2018-09)
    Malaria infection continues to be a major health problem worldwide and drug resistance in the major human parasite species, Plasmodium falciparum, is increasing in South East Asia. Control measures including novel drugs and vaccines are in development, and contributions to the rational design and optimal usage of these interventions are urgently needed. Infection involves the complex interaction of parasite dynamics, host immunity, and drug effects. The long life cycle (48 hours in the common human species) and synchronized replication cycle of the parasite population present significant challenges to modeling the dynamics of Plasmodium infection. Coupled with these, variation in immune recognition and drug action at different life cycle stages leads to further complexity. We review the development and progress of "within-host" models of Plasmodium infection, and how these have been applied to understanding and interpreting human infection and animal models of infection.
  • Item
    Thumbnail Image
    Diurnal variation in expired breath volatiles in malaria-infected and healthy volunteers
    Berna, AZ ; McCarthy, JS ; Wang, XR ; Michie, M ; Bravo, FG ; Cassells, J ; Trowell, SC (IOP Publishing Ltd, 2018-10)
    We previously showed that thioether levels in the exhaled breath volatiles of volunteers undergoing controlled human malaria infection (CHMI) with P. falciparum increase as infection progresses. In this study, we show that thioethers have diurnal cyclical increasing patterns and their levels are significantly higher in P. falciparum CHMI volunteers compared to those of healthy volunteers. The synchronized cycle and elevation of thioethers were not present in P. vivax-infection, therefore it is likely that the thioethers are associated with unique factors in the pathology of P. falciparum. Moreover, we found that time-of-day of breath collection is important to accurately predict (98%) P. falciparum-infection. Critically, this was achieved when the disease was asymptomatic and parasitemia was below the level detectable by microscopy. Although these findings are encouraging, they show limitations because of the limited and logistically difficult diagnostic window and its utility to P. falciparum malaria only. We looked for new biomarkers in the breath of P. vivax CHMI volunteers and found that a set of terpenes increase significantly over the course of the malaria infection. The accuracy of predicting P. vivax using breath terpenes was up to 91%. Moreover, some of the terpenes were also found in the breath of P. falciparum CHMI volunteers (accuracy up to 93.5%). The results suggest that terpenes might represent better biomarkers than thioethers to predict malaria as they were not subject to malaria pathogens diurnal changes.
  • Item
    Thumbnail Image
    Model-Informed Drug Development for Malaria Therapeutics
    Andrews, KA ; Wesche, D ; McCarthy, J ; Mohrle, JJ ; Tarning, J ; Phillips, L ; Kern, S ; Grasela, T ; Insel, PA (ANNUAL REVIEWS, 2018)
    Malaria is a critical public health problem resulting in substantial morbidity and mortality, particularly in developing countries. Owing to the development of resistance toward current therapies, novel approaches to accelerate the development efforts of new malaria therapeutics are urgently needed. There have been significant advancements in the development of in vitro and in vivo experiments that generate data used to inform decisions about the potential merit of new compounds. A comprehensive disease-drug model capable of integrating discrete data from different preclinical and clinical components would be a valuable tool across all stages of drug development. This could have an enormous impact on the otherwise slow and resource-intensive process of traditional clinical drug development.
  • Item
    Thumbnail Image
    Isolation and characterization of malaria PfHRP2 specific VNAR antibody fragments from immunized shark phage display library
    Leow, CH ; Fischer, K ; Leow, CY ; Braet, K ; Cheng, Q ; McCarthy, J (BMC, 2018-10-24)
    BACKGROUND: Malaria rapid diagnostic tests (RDTs) represent an important antibody based immunoassay platform. Unfortunately, conventional monoclonal antibodies are subject to degradation shortening shelf lives of RDTs. The variable region of the receptor (VNAR) from shark has a potential as alternative to monoclonal antibodies in RDTs due to high thermal stability. METHODS: In this study, new binders derived from shark VNAR domains library were investigated. Following immunization of a wobbegong shark (Orectolobus ornatus) with three recombinant malaria biomarker proteins (PfHRP2, PfpLDH and Pvaldolase), a single domain antibody (sdAb) library was constructed from splenocytes. Target-specific VNAR phage were isolated by panning. One specific clone was selected for expression in Escherichia coli expression system, and study of binding reactivity undertaken. RESULTS: The primary VNAR domain library possessed a titre of 1.16 × 106 pfu/mL. DNA sequence analysis showed 82.5% of isolated fragments appearing to contain an in-frame sequence. After multiple rounds of biopanning, a highly dominant clone specific to PfHRP2 was identified and selected for protein production in an E. coli expression system. Biological characterization showed the recombinant protein expressed in periplasmic has better detection sensitivity than that of cytoplasmic proteins. Assays of binding activity indicated that its reactivity was inferior to the positive control mAb C1-13. CONCLUSIONS: Target-specific bacteriophage VNARs were successfully isolated after a series of immunization, demonstrating that phage display technology is a useful tool for selection of antigen binders. Generation of new binding reagents such as VNAR antibodies that specifically recognize the malaria biomarkers represents an appealing approach to improve the performance of RDTs.
  • Item
    Thumbnail Image
    Assessing Plasmodium falciparum transmission in mosquito-feeding assays using quantitative PCR
    Wang, CYT ; McCarthy, JS ; Stone, WJ ; Bousema, T ; Collins, KA ; Bialasiewicz, S (BMC, 2018-07-05)
    BACKGROUND: Evaluating the efficacy of transmission-blocking interventions relies on mosquito-feeding assays, with transmission typically assessed by microscopic identification of oocysts in mosquito midguts; however, microscopy has limited throughput, sensitivity and specificity. Where low prevalence and intensity mosquito infections occur, as observed during controlled human malaria infection studies or natural transmission, a reliable method for detection and quantification of low-level midgut infection is required. Here, a semi-automated, Taqman quantitative PCR (qPCR) assay sufficiently sensitive to detect a single-oocyst midgut infection is described. RESULTS: Extraction of genomic DNA from Anopheles stephensi midguts using a semi-automated extraction process was shown to have equivalent extraction efficiency to manual DNA extraction. An 18S Plasmodium falciparum qPCR assay was adapted for quantitative detection of P. falciparum midgut oocyst infection using synthetic DNA standards. The assay was validated for sensitivity and specificity, and the limit of detection was 0.7 genomes/µL (95% CI 0.4-1.6 genomes/µL). All microscopy-confirmed oocyst infected midgut samples were detected by qPCR, including all single-oocyst positive midguts. The genome number per oocyst was assessed 8-9 days after feeding assay using both qPCR and droplet digital PCR and was 3722 (IQR: 2951-5453) and 3490 (IQR: 2720-4182), respectively. CONCLUSIONS: This semi-automated qPCR method enables accurate detection of low-level P. falciparum oocyst infections in mosquito midguts, and may improve the sensitivity, specificity and throughput of assays used to evaluate candidate transmission-blocking interventions.
  • Item
    Thumbnail Image
    Evaluation of safety and immunogenicity of a group A streptococcus vaccine candidate (MJ8VAX) in a randomized clinical trial
    Sekuloski, S ; Batzloff, MR ; Griffin, P ; Parsonage, W ; Elliott, S ; Hartas, J ; O'Rourke, P ; Marquart, L ; Pandey, M ; Rubin, FA ; Carapetis, J ; McCarthy, J ; Good, MF ; Moreland, NJ (PUBLIC LIBRARY SCIENCE, 2018-07-02)
    BACKGROUND: Group A streptococcus (GAS) is a serious human pathogen that affects people of different ages and socio-economic levels. Although vaccination is potentially one of the most effective methods to control GAS infection and its sequelae, few prototype vaccines have been investigated in humans. In this study, we report the safety and immunogenicity of a novel acetylated peptide-protein conjugate vaccine candidate MJ8VAX (J8-DT), when delivered intramuscularly to healthy adults. METHODS: A randomized, double-blinded, controlled Phase I clinical trial was conducted in 10 healthy adult participants. Participants were randomized 4:1 to receive the vaccine candidate (N = 8) or placebo (N = 2). A single dose of the vaccine candidate (MJ8VAX), contained 50 μg of peptide conjugate (J8-DT) adsorbed onto aluminium hydroxide and re-suspended in PBS in a total volume of 0.5 mL. Safety of the vaccine candidate was assessed by monitoring local and systemic adverse reactions following intramuscular administration. The immunogenicity of the vaccine was assessed by measuring the levels of peptide (anti-J8) and toxoid carrier (anti-DT)-specific antibodies in serum samples. RESULTS: No serious adverse events were reported over 12 months of study. A total of 13 adverse events (AEs) were recorded, two of which were assessed to be associated with the vaccine. Both were mild in severity. No local reactogenicity was recorded in any of the participants. MJ8VAX was shown to be immunogenic, with increase in vaccine-specific antibodies in the participants who received the vaccine. The maximum level of vaccine-specific antibodies was detected at 28 days post immunization. The level of these antibodies decreased with time during follow-up. Participants who received the vaccine also had a corresponding increase in anti-DT serum antibodies. CONCLUSIONS: Intramuscular administration of MJ8VAX was demonstrated to be safe and immunogenic. The presence of DT in the vaccine formulation resulted in a boost in the level of anti-DT antibodies. TRIAL REGISTRATION: ACTRN12613000030774.
  • Item
    Thumbnail Image
    (S)WASH-D for Worms: A pilot study investigating the differential impact of school-versus community-based integrated control programs for soil-transmitted helminths
    Clarke, NE ; Clements, ACA ; Amaral, S ; Richardson, A ; McCarthy, JS ; McGown, J ; Bryan, S ; Gray, DJ ; Nery, SV ; Mackenzie, CD (PUBLIC LIBRARY SCIENCE, 2018-05)
    BACKGROUND: Soil-transmitted helminths (STH) infect nearly 1.5 billion individuals globally, and contribute to poor physical and cognitive development in children. STH control programs typically consist of regular delivery of anthelminthic drugs, targeting school-aged children. Expanding STH control programs community-wide may improve STH control among school-aged children, and combining deworming with improvements to water, sanitation and hygiene (WASH) may further reduce transmission. The (S)WASH-D for Worms pilot study aims to compare the differential impact of integrated WASH and deworming programs when implemented at primary schools only versus when additionally implemented community-wide. METHODOLOGY/PRINCIPAL FINDINGS: A two-arm, non-randomized cluster intervention study was conducted. Six communities were identified by partner WASH agencies and enrolled in the study. All communities received a school-based WASH and deworming program, while three additionally received a community-based WASH and deworming program. STH infections were measured in school-aged children at baseline and six months after deworming. Over 90% of eligible children were recruited for the study, of whom 92.3% provided stool samples at baseline and 88.9% at follow-up. The school WASH intervention improved school sanitation, while the community WASH intervention reduced open defecation from 50.4% (95% CI 41.8-59.0) to 23.5% (95% CI 16.7-32.0). There was a trend towards reduced odds of N. americanus infection among children who received the community-wide intervention (OR 0.42, 95% CI 0.07-2.36, p = 0.32). CONCLUSIONS: This pilot study provides proof of principle for testing the hypothesis that community-wide STH control programs have a greater impact on STH infections among children than school-based programs, and supports the rationale for conducting a full-scale cluster randomized controlled trial. High recruitment and participation rates and successful implementation of school WASH programs demonstrate study feasibility and acceptability. However, eliminating open defecation remains a challenge; ongoing work is required to develop community sanitation programs that achieve high and sustainable latrine coverage. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12615001012561.
  • Item
    Thumbnail Image
    The Dynamics of Liver Function Test Abnormalities after Malaria Infection: A Retrospective Observational Study
    Woodford, J ; Shanks, GD ; Griffin, P ; Chalon, S ; McCarthy, JS (AMER SOC TROP MED & HYGIENE, 2018)
    Liver dysfunction has long been recognized as a clinical feature of malaria. We have observed delayed elevation in the transaminase portion of liver function tests (LFTs) after treatment in some participants undergoing induced blood stage malaria infection. We sought to determine whether similar LFT elevations occur after naturally acquired infection. We performed a retrospective audit of confirmed cases of Plasmodium falciparum and Plasmodium vivax in Queensland, Australia, from 2006 to 2016. All LFT results from malaria diagnosis until 28 days after diagnosis were collected with demographic and clinical information to describe longitudinal changes. The timing of peak LFT elevations was classified as early (0-3 days), delayed (4-11 days), or late (12-28 days) with respect to the day of diagnosis. Among 861 cases with LFT evaluated, an elevated bilirubin level was identified in 12.4% (N = 107/861), whereas elevated alanine transaminase (ALT) and aspartate transaminase levels were observed in 15.1% (N = 130/861) and 14.8% (N = 127/861) of cases, respectively. All peak bilirubin results occurred in the early period, whereas ALT elevations were biphasic, with elevations in the early and delayed periods, with 35.4% (N = 46/130) of cases delayed. Univariate and paired stepwise logistic regression analyses were performed to investigate factors associated with the incidence and timing of transaminase elevation. A raised ALT level at diagnosis was strongly associated with the timing of transaminase elevation. No other demographic, parasitic, or treatment factors were associated. Liver function test abnormalities are likely an inherent although variable aspect of human malaria, and individual-specific factors may confer susceptibility to hepatocyte injury.
  • Item
    Thumbnail Image
    A controlled human malaria infection model enabling evaluation of transmission-blocking interventions
    Collins, KA ; Wang, CYT ; Adams, M ; Mitchell, H ; Rampton, M ; Elliott, S ; Reuling, IJ ; Bousema, T ; Sauerwein, R ; Chalon, S ; Mohrle, JJ ; McCarthy, JS (AMER SOC CLINICAL INVESTIGATION INC, 2018-04-02)
    BACKGROUND: Drugs and vaccines that can interrupt the transmission of Plasmodium falciparum will be important for malaria control and elimination. However, models for early clinical evaluation of candidate transmission-blocking interventions are currently unavailable. Here, we describe a new model for evaluating malaria transmission from humans to Anopheles mosquitoes using controlled human malaria infection (CHMI). METHODS: Seventeen healthy malaria-naive volunteers underwent CHMI by intravenous inoculation of P. falciparum-infected erythrocytes to initiate blood-stage infection. Seven to eight days after inoculation, participants received piperaquine (480 mg) to attenuate asexual parasite replication while allowing gametocytes to develop and mature. Primary end points were development of gametocytemia, the transmissibility of gametocytes from humans to mosquitoes, and the safety and tolerability of the CHMI transmission model. To investigate in vivo gametocytocidal drug activity in this model, participants were either given an experimental antimalarial, artefenomel (500 mg), or a known gametocytocidal drug, primaquine (15 mg), or remained untreated during the period of gametocyte carriage. RESULTS: Male and female gametocytes were detected in all participants, and transmission to mosquitoes was achieved from 8 of 11 (73%) participants evaluated. Compared with results in untreated controls (n = 7), primaquine (15 mg, n = 5) significantly reduced gametocyte burden (P = 0.01), while artefenomel (500 mg, n = 4) had no effect. Adverse events (AEs) were mostly mild or moderate. Three AEs were assessed as severe - fatigue, elevated alanine aminotransferase, and elevated aspartate aminotransferase - and were attributed to malaria infection. Transaminase elevations were transient, asymptomatic, and resolved without intervention. CONCLUSION: We report the safe and reproducible induction of P. falciparum gametocytes in healthy malaria-naive volunteers at densities infectious to mosquitoes, thereby demonstrating the potential for evaluating transmission-blocking interventions in this model. TRIAL REGISTRATION: ClinicalTrials.gov NCT02431637 and NCT02431650. FUNDING: Bill & Melinda Gates Foundation.