Melbourne Medical School Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    3D‐Printed Micro Lens‐in‐Lens for In Vivo Multimodal Microendoscopy (Small 17/2022)
    Li, J ; Thiele, S ; Kirk, RW ; Quirk, BC ; Hoogendoorn, A ; Chen, YC ; Peter, K ; Nicholls, SJ ; Verjans, JW ; Psaltis, PJ ; Bursill, C ; Herkommer, AM ; Giessen, H ; McLaughlin, RA (Wiley, 2022-04)
    In article number 2107032, Jiawen Li and co-workers use two-photon 3D printing to develop a 330 micron diameter lens optimized for both fluorescence imaging and optical coherence tomography. This lens-in-lens design is incorporated in an intravascular imaging catheter offering improved performance for heart disease detection.
  • Item
    Thumbnail Image
    Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetes-Induced Atherosclerotic Plaque Instability
    Chen, Y-C ; Jandeleit-Dahm, K ; Peter, K (WILEY, 2022-01-04)
    Background Diabetes is known to accelerate atherosclerosis and increase plaque instability. However, there has been a lack of suitable animal models to study the effect of diabetes on plaque instability. We hypothesized that the tandem stenosis mouse model, which reflects plaque instability/rupture as seen in patients, can be applied to study the effects of diabetes and respective therapeutics on plaque instability/rupture. Methods and Results ApoE-/- mice at 7 weeks of age were rendered diabetic with streptozotocin and 5 weeks later were surgically subjected to tandem stenosis in the right carotid artery and fed with a high-fat diet for 7 weeks. As a promising new antidiabetic drug class, a sodium glucose co-transporter 2 inhibitor was tested in this new model. Diabetic mice showed an increase in the size of unstable atherosclerotic plaques and in the plaque instability markers MCP-1, CD68, and necrotic core size. Mice treated with dapagliflozin demonstrated attenuated glucose and triglyceride levels. Importantly, these mice demonstrated plaque stabilization with enhanced collagen accumulation, increased fibrosis, increased cap-to-lesion height ratios, and significant upregulation of the vasculoprotective NADPH oxidase 4 expression. Conclusions The tandem stenosis mouse model in combination with the application of streptozotocin represents a highly suitable and unique mouse model for studying plaque destabilization under diabetic conditions. Furthermore, for the first time, we provide evidence of plaque-stabilizing effects of sodium-glucose co-transporter 2 inhibitor. Our data also suggest that this newly developed mouse model is an attractive preclinical tool for testing antidiabetic drugs for the highly sought-after potential to stabilize atherosclerotic plaques.
  • Item
    Thumbnail Image
    Pharmacological Inhibition of Factor XIIa Attenuates Abdominal Aortic Aneurysm, Reduces Atherosclerosis, and Stabilizes Atherosclerotic Plaques
    Searle, AK ; Chen, Y-C ; Wallert, M ; McFadyen, JD ; Maluenda, AC ; Noonan, J ; Kanellakis, P ; Zaldivia, MTK ; Huang, A ; Lioe, H ; Biondo, M ; Nolte, MW ; Rossato, P ; Bobik, A ; Panousis, C ; Wang, X ; Hosseini, H ; Peter, K (GEORG THIEME VERLAG KG, 2022-02)
    BACKGROUND: 3F7 is a monoclonal antibody targeting the enzymatic pocket of activated factor XII (FXIIa), thereby inhibiting its catalytic activity. Given the emerging role of FXIIa in promoting thromboinflammation, along with its apparent redundancy for hemostasis, the selective inhibition of FXIIa represents a novel and highly attractive approach targeting pathogenic processes that cause thromboinflammation-driven cardiovascular diseases. METHODS: The effects of FXIIa inhibition were investigated using three distinct mouse models of cardiovascular disease-angiotensin II-induced abdominal aortic aneurysm (AAA), an ApoE-/- model of atherosclerosis, and a tandem stenosis model of atherosclerotic plaque instability. 3F7 or its isotype control, BM4, was administered to mice (10 mg/kg) on alternate days for 4 to 8 weeks, depending on the experimental model. Mice were examined for the development and size of AAAs, or the burden and instability of atherosclerosis and associated markers of inflammation. RESULTS: Inhibition of FXIIa resulted in a reduced incidence of larger AAAs, with less acute aortic ruptures and an associated fibro-protective phenotype. FXIIa inhibition also decreased stable atherosclerotic plaque burden and achieved plaque stabilization associated with increased deposition of fibrous structures, a >2-fold thicker fibrous cap, increased cap-to-core ratio, and reduction in localized and systemic inflammatory markers. CONCLUSION: Inhibition of FXIIa attenuates disease severity across three mouse models of thromboinflammation-driven cardiovascular diseases. Specifically, the FXIIa-inhibiting monoclonal antibody 3F7 reduces AAA severity, inhibits the development of atherosclerosis, and stabilizes vulnerable plaques. Ultimately, clinical trials in patients with cardiovascular diseases such as AAA and atherosclerosis are warranted to demonstrate the therapeutic potential of FXIIa inhibition.
  • Item
    Thumbnail Image
    3D-Printed Micro Lens-in-Lens for In Vivo Multimodal Microendoscopy
    Li, J ; Thiele, S ; Kirk, RW ; Quirk, BC ; Hoogendoorn, A ; Chen, YC ; Peter, K ; Nicholls, SJ ; Verjans, JW ; Psaltis, PJ ; Bursill, C ; Herkommer, AM ; Giessen, H ; McLaughlin, RA (WILEY-V C H VERLAG GMBH, 2022-04)
    Multimodal microendoscopes enable co-located structural and molecular measurements in vivo, thus providing useful insights into the pathological changes associated with disease. However, different optical imaging modalities often have conflicting optical requirements for optimal lens design. For example, a high numerical aperture (NA) lens is needed to realize high-sensitivity fluorescence measurements. In contrast, optical coherence tomography (OCT) demands a low NA to achieve a large depth of focus. These competing requirements present a significant challenge in the design and fabrication of miniaturized imaging probes that are capable of supporting high-quality multiple modalities simultaneously. An optical design is demonstrated which uses two-photon 3D printing to create a miniaturized lens that is simultaneously optimized for these conflicting imaging modalities. The lens-in-lens design contains distinct but connected optical surfaces that separately address the needs of both fluorescence and OCT imaging within a lens of 330 µm diameter. This design shows an improvement in fluorescence sensitivity of >10x in contrast to more conventional fiber-optic design approaches. This lens-in-lens is then integrated into an intravascular catheter probe with a diameter of 520 µm. The first simultaneous intravascular OCT and fluorescence imaging of a mouse artery in vivo is reported.
  • Item
    Thumbnail Image
    Analyzing the shear-induced sensitization of mechanosensitive ion channel Piezo-1 in human aortic endothelial cells
    Lai, A ; Chen, YC ; Cox, CD ; Jaworowski, A ; Peter, K ; Baratchi, S (WILEY, 2021-04)
    Mechanosensitive ion channels mediate endothelial responses to blood flow and orchestrate their physiological function in response to hemodynamic forces. In this study, we utilized microfluidic technologies to study the shear-induced sensitization of endothelial Piezo-1 to its selective agonist, Yoda-1. We demonstrated that shear stress-induced sensitization is brief and can be impaired when exposing aortic endothelial cells to low and proatherogenic levels of shear stress. Our results suggest that shear stress-induced sensitization of Piezo-1 to Yoda-1 is independent of cell-cell adhesion and is mediated by the PI3K-AKT signaling pathway. We also found that shear stress increases the membrane density of Piezo-1 channels in endothelial cells. To further confirm our findings, we performed experiments using a carotid artery ligation mouse model and demonstrated that transient changes in blood-flow pattern, resulting from a high-degree ligation of the mouse carotid artery alters the distribution of Piezo-1 channels across the endothelial layer. These results suggest that shear stress influences the function of Piezo-1 channels via changes in membrane density, providing a new model of shear-stress sensitivity for Piezo-1 ion channel.
  • Item
    No Preview Available
    Genetic transfer of fusion proteins effectively inhibits VCAM-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage
    Hagemeyer, CE ; Ahrens, I ; Bassler, N ; Dschachutaschwili, N ; Chen, YC ; Eisenhardt, SU ; Bode, C ; Peter, K (WILEY, 2010-01)
    The adhesion of leukocytes to endothelium plays a central role in the development of atherosclerosis and thus represents an attractive therapeutic target for anti-atherosclerotic therapies. Vascular cell adhesion molecule-1 (VCAM-1) mediates both the initial tethering and the firm adhesion of leukocytes to endothelial cells. Our work evaluates the feasibility of using the cytoskeletal anchorage of VCAM-1 as a target for gene therapy. As a proof of concept, integrin alphaIIbbeta3-mediated cell adhesion with clearly defined cytoskeletal anchorage was tested. We constructed fusion proteins containing the intracellular domain of beta3 placed at various distances to the cell membrane. Using cell adhesion assays and immunofluorescence, we established fusion constructs with competitive and dominant negative inhibition of cell adhesion. With the goal being the transfer of the dominant negative mechanism towards VCAM-1 inhibition, we constructed a fusion molecule containing the cytoplasmic domain of VCAM-1. Indeed, VCAM-1 mediated leukocyte adhesion can be inhibited via transfection of DNA encoding the designed VCAM-1 fusion protein. This is demonstrated in adhesion assays under static and flow conditions using CHO cells expressing recombinant VCAM-1 as well as activated endothelial cells. Thus, we are able to describe a novel approach for dominant negative inhibition of leukocyte adhesion to endothelial cells. This approach warrants further development as a novel gene therapeutic strategy that aims for a locally restricted effect at atherosclerotic areas of the vasculature.
  • Item
    No Preview Available
    Thrombus-Targeted Theranostic Microbubbles: A New Technology towards Concurrent Rapid Ultrasound Diagnosis and Bleeding-free Fibrinolytic Treatment of Thrombosis
    Wang, X ; Gkanatsas, Y ; Palasubramaniam, J ; Hohmann, JD ; Chen, YC ; Lim, B ; Hagemeyer, CE ; Peter, K (IVYSPRING INT PUBL, 2016)
    RATIONALE: Myocardial infarction and stroke are leading causes of morbidity/mortality. The typical underlying pathology is the formation of thrombi/emboli and subsequent vessel occlusion. Systemically administered fibrinolytic drugs are the most effective pharmacological therapy. However, bleeding complications are relatively common and this risk as such limits their broader use. Furthermore, a rapid non-invasive imaging technology is not available. Thereby, many thrombotic events are missed or only diagnosed when ischemic damage has already occurred. OBJECTIVE: Design and preclinical testing of a novel 'theranostic' technology for the rapid non-invasive diagnosis and effective, bleeding-free treatment of thrombosis. METHODS AND RESULTS: A newly created, innovative theranostic microbubble combines a recombinant fibrinolytic drug, an echo-enhancing microbubble and a recombinant thrombus-targeting device in form of an activated-platelet-specific single-chain antibody. After initial in vitro proof of functionality, we tested this theranostic microbubble both in ultrasound imaging and thrombolytic therapy using a mouse model of ferric-chloride-induced thrombosis in the carotid artery. We demonstrate the reliable highly sensitive detection of in vivo thrombi and the ability to monitor their size changes in real time. Furthermore, these theranostic microbubbles proofed to be as effective in thrombolysis as commercial urokinase but without the prolongation of bleeding time as seen with urokinase. CONCLUSIONS: We describe a novel theranostic technology enabling simultaneous diagnosis and treatment of thrombosis, as well as monitoring of success or failure of thrombolysis. This technology holds promise for major progress in rapid diagnosis and bleeding-free thrombolysis thereby potentially preventing the often devastating consequences of thrombotic disease in many patients.
  • Item
    Thumbnail Image
    Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases
    Yap, ML ; McFadyen, JD ; Wang, X ; Ziegler, M ; Chen, Y-C ; Willcox, A ; Nowell, CJ ; Scott, AM ; Sloan, EK ; Hogarth, PM ; Pietersz, GA ; Peter, K (IVYSPRING INT PUBL, 2019)
    Rationale: Platelets are increasingly recognized as mediators of tumor growth and metastasis. Hypothesizing that activated platelets in the tumor microenvironment provide a targeting epitope for tumor-directed chemotherapy, we developed an antibody-drug conjugate (ADC), comprised of a single-chain antibody (scFv) against the platelet integrin GPIIb/IIIa (scFvGPIIb/IIIa) linked to the potent chemotherapeutic microtubule inhibitor, monomethyl auristatin E (MMAE). Methods: We developed an ADC comprised of three components: 1) A scFv which specifically binds to the high affinity, activated integrin GPIIb/IIIa on activated platelets. 2) A highly potent microtubule inhibitor, monomethyl auristatin E. 3) A drug activation/release mechanism using a linker cleavable by cathepsin B, which we demonstrate to be abundant in the tumor microenvironment. The scFvGPIIb/IIIa-MMAE was first conjugated with Cyanine7 for in vivo imaging. The therapeutic efficacy of the scFvGPIIb/IIIa-MMAE was then tested in a mouse metastasis model of triple negative breast cancer. Results: In vitro studies confirmed that this ADC specifically binds to activated GPIIb/IIIa, and cathepsin B-mediated drug release/activation resulted in tumor cytotoxicity. In vivo fluorescence imaging demonstrated that the newly generated ADC localized to primary tumors and metastases in a mouse xenograft model of triple negative breast cancer, a difficult to treat tumor for which a selective tumor-targeting therapy remains to be clinically established. Importantly, we demonstrated that the scFvGPIIb/IIIa-MMAE displays marked efficacy as an anti-cancer agent, reducing tumor growth and preventing metastatic disease, without any discernible toxic effects. Conclusion: Here, we demonstrate the utility of a novel ADC that targets a potent cytotoxic drug to activated platelets and specifically releases the cytotoxic agent within the confines of the tumor. This unique targeting mechanism, specific to the tumor microenvironment, holds promise as a novel therapeutic approach for the treatment of a broad range of primary tumors and metastatic disease, particularly for tumors that lack specific molecular epitopes for drug targeting.
  • Item
    Thumbnail Image
    Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques
    Htun, NM ; Chen, YC ; Lim, B ; Schiller, T ; Maghzal, GJ ; Huang, AL ; Elgass, KD ; Rivera, J ; Schneider, HG ; Wood, BR ; Stocker, R ; Peter, K (NATURE RESEARCH, 2017-07-13)
    Atherosclerosis is a major cause of mortality and morbidity, which is mainly driven by complications such as myocardial infarction and stroke. These complications are caused by thrombotic arterial occlusion localized at the site of high-risk atherosclerotic plaques, of which early detection and therapeutic stabilization are urgently needed. Here we show that near-infrared autofluorescence is associated with the presence of intraplaque hemorrhage and heme degradation products, particularly bilirubin by using our recently created mouse model, which uniquely reflects plaque instability as seen in humans, and human carotid endarterectomy samples. Fluorescence emission computed tomography detecting near-infrared autofluorescence allows in vivo monitoring of intraplaque hemorrhage, establishing a preclinical technology to assess and monitor plaque instability and thereby test potential plaque-stabilizing drugs. We suggest that near-infrared autofluorescence imaging is a novel technology that allows identification of atherosclerotic plaques with intraplaque hemorrhage and ultimately holds promise for detection of high-risk plaques in patients.Atherosclerosis diagnosis relies primarily on imaging and early detection of high-risk atherosclerotic plaques is important for risk stratification of patients and stabilization therapies. Here Htun et al. demonstrate that vulnerable atherosclerotic plaques generate near-infrared autofluorescence that can be detected via emission computed tomography.
  • Item
    Thumbnail Image
    GPVI and GPIbα Mediate Staphylococcal Superantigen-Like Protein 5 (SSL5) Induced Platelet Activation and Direct toward Glycans as Potential Inhibitors
    Hu, H ; Armstrong, PCJ ; Khalil, E ; Chen, Y-C ; Straub, A ; Li, M ; Soosairajah, J ; Hagemeyer, CE ; Bassler, N ; Huang, D ; Ahrens, I ; Krippner, G ; Gardiner, E ; Peter, K ; Tse, H (PUBLIC LIBRARY SCIENCE, 2011-04-28)
    BACKGROUND: Staphylococcus aureus (S. aureus) is a common pathogen capable of causing life-threatening infections. Staphylococcal superantigen-like protein 5 (SSL5) has recently been shown to bind to platelet glycoproteins and induce platelet activation. This study investigates further the interaction between SSL5 and platelet glycoproteins. Moreover, using a glycan discovery approach, we aim to identify potential glycans to therapeutically target this interaction and prevent SSL5-induced effects. METHODOLOGY/PRINCIPAL FINDINGS: In addition to platelet activation experiments, flow cytometry, immunoprecipitation, surface plasmon resonance and a glycan binding array, were used to identify specific SSL5 binding regions and mediators. We independently confirm SSL5 to interact with platelets via GPIbα and identify the sulphated-tyrosine residues as an important region for SSL5 binding. We also identify the novel direct interaction between SSL5 and the platelet collagen receptor GPVI. Together, these receptors offer one mechanistic explanation for the unique functional influences SSL5 exerts on platelets. A role for specific families of platelet glycans in mediating SSL5-platelet interactions was also discovered and used to identify and demonstrate effectiveness of potential glycan based inhibitors in vitro. CONCLUSIONS/SIGNIFICANCE: These findings further elucidate the functional interactions between SSL5 and platelets, including the novel finding of a role for the GPVI receptor. We demonstrate efficacy of possible glycan-based approaches to inhibit the SSL5-induced platelet activation. Our data warrant further work to prove SSL5-platelet effects in vivo.