Melbourne Medical School Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    MODULATION OF CELL-ADHESION BY CHANGES IN ALPHA(L)BETA(2) (LFA-1, CD11A/CD18) CYTOPLASMIC DOMAIN/CYTOSKELETON INTERACTION
    PETER, K ; OTOOLE, TE (ROCKEFELLER UNIV PRESS, 1995-01-01)
    The integrin alpha L beta 2 (leukocyte function-associated molecule 1, CD11a/CD18) mediates activation-dependent adhesion of leukocytes. The cytoplasmic domains of alpha L beta 2 have been demonstrated to modulate adhesiveness of alpha L beta 2. Affinity changes of alpha L beta 2 for its ligand or postreceptor events can be responsible for this modulation of adhesiveness. To investigate the possible role of the alpha L beta 2 cytoplasmic domains in postreceptor events we constructed cDNA encoding chimeric proteins with intracellular alpha L beta 2 domains, which are responsible for alpha L beta 2 specific intracellular interactions, and extracellular alpha IIIb beta 3 (GP IIb/IIIa) domains, which allow the assessment of the receptor affinity state. The cDNA was stably transfected in Chinese hamster ovary cells and chimeric heterodimer formation proven by immunoprecipitations and flow cytometry. The chimeric receptors mediate adhesion to immobilized fibrinogen, and this adhesion is increased by phorbol myristate acetate and abolished by cytochalasin D. However, neither treatment affects the affinity state of the chimeric receptor, suggesting involvement of the cytoskeleton in the regulation of alpha L beta 2 mediated cell adhesion. To exclude the possibility of postoccupancy affinity changes of the chimeric receptors, we locked the receptors into a high affinity state by creating a deletion variant. The region deleted (VGFFK) is highly conserved in integrin alpha subunit cytoplasmic domains. Cotransfection of this deletion variant with a beta subunit truncation (beta 3 delta 724) and a triple mutation at 758-760 (TTT to AAA) of beta 2 abolishes adhesion without changing the affinity state. A single mutation (TTT to TAT) reduces adhesion by half without affinity change. Scanning electron microscopy reveals impaired spreading of these truncated/mutated chimeras. Immunofluorescence microscopy demonstrates a correlation between impaired adhesion and a decrease in the ability to form focal adhesions and to organize the cytoskeleton into stress fibers. These results describe the integrin/cytoskeleton interaction, the organization of the cytoskeleton, and cell spreading as postreceptor events modulating alpha L beta 2 cytoplasmic domain mediated cell adhesion. Furthermore, we demonstrate that the cytoplasmic domain of the beta 2 subunit, and within it the TTT region, are required for these postreceptor events. Additionally, we present a new approach, using deletion variants to lock integrins in a high affinity state without interfering with the investigated integrin/cytoskeleton interaction. This approach may be generally useful to investigate the role of postreceptor events in integrin-mediated cell adhesion and migration.
  • Item
    Thumbnail Image
    INTEGRIN CYTOPLASMIC DOMAINS MEDIATE INSIDE-OUT SIGNAL-TRANSDUCTION
    OTOOLE, TE ; KATAGIRI, Y ; FAULL, RJ ; PETER, K ; TAMURA, R ; QUARANTA, V ; LOFTUS, JC ; SHATTIL, SJ ; GINSBERG, MH (ROCKEFELLER UNIV PRESS, 1994-03)
    We analyzed the binding of fibronectin to integrin alpha 5 beta 1 in various cells; in some cells fibronectin bound with low affinity (e.g., K562 cells) whereas in others (e.g., CHO), it bound with high affinity (Kd approximately 100 nM) in an energy-dependent manner. We constructed chimeras of the extracellular and transmembrane domains of alpha IIb beta 3 joined to the cytoplasmic domains of alpha 5 beta 1. The affinity state of these chimeras was assessed by binding of fibrinogen or the monoclonal antibody, PAC1. The cytoplasmic domains of alpha 5 beta 1 conferred an energy-dependent high affinity state on alpha IIb beta 3 in CHO but not K562 cells. Three additional alpha cytoplasmic domains (alpha 2, alpha 6A, alpha 6B) conferred PAC1 binding in CHO cells, while three others (alpha M, alpha L, alpha v) did not. In the high affinity alpha chimeras, cotransfection with a truncated (beta 3 delta 724) or mutated (beta 3(S752-->P)) beta 3 subunit abolished high affinity binding. Thus, both cytoplasmic domains are required for energy-dependent, cell type-specific affinity modulation. In addition, mutations that disrupted a highly conserved alpha subunit GFFKR motif, resulted in high affinity binding of ligands to alpha IIb beta 3. In contrast to the chimeras, the high affinity state of these mutants was independent of cellular metabolism, cell type, and the bulk of the beta subunit cytoplasmic domain. Thus, integrin cytoplasmic domains mediate inside-out signaling. Furthermore, the highly conserved GFFKR motif of the alpha subunit cytoplasmic domain maintains the default low affinity state.