Melbourne Medical School Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 75
  • Item
    Thumbnail Image
    Validating Eaton's Hypothesis: Cubane as a Benzene Bioisostere (vol 55, pg 3580, 2016)
    Chalmers, BA ; Xing, H ; Houston, S ; Clark, C ; Ghassabian, S ; Kuo, A ; Cao, B ; Reitsma, A ; Murray, C-EP ; Stok, JE ; Boyle, GM ; Pierce, CJ ; Littler, SW ; Winkler, DA ; Bernhardt, PV ; Pasay, C ; De Voss, JJ ; McCarthy, J ; Parsons, PG ; Walter, GH ; Smith, MT ; Cooper, HM ; Nilsson, SK ; Tsanaktsidis, J ; Savage, GP ; Williams, CM (WILEY-V C H VERLAG GMBH, 2018-07-09)
  • Item
    Thumbnail Image
    Within-host modeling of blood-stage malaria
    Khoury, DS ; Aogo, R ; Randriafanomezantsoa-Radohery, G ; McCaw, JM ; Simpson, JA ; McCarthy, JS ; Haque, A ; Cromer, D ; Davenport, MP (WILEY, 2018-09)
    Malaria infection continues to be a major health problem worldwide and drug resistance in the major human parasite species, Plasmodium falciparum, is increasing in South East Asia. Control measures including novel drugs and vaccines are in development, and contributions to the rational design and optimal usage of these interventions are urgently needed. Infection involves the complex interaction of parasite dynamics, host immunity, and drug effects. The long life cycle (48 hours in the common human species) and synchronized replication cycle of the parasite population present significant challenges to modeling the dynamics of Plasmodium infection. Coupled with these, variation in immune recognition and drug action at different life cycle stages leads to further complexity. We review the development and progress of "within-host" models of Plasmodium infection, and how these have been applied to understanding and interpreting human infection and animal models of infection.
  • Item
    No Preview Available
    Human immune responses to infective stage larval-specific chitinase of filarial parasite, Onchocerca volvulus, Ov-CHI-1.
    Wu, Y ; Egerton, G ; McCarthy, JS ; Nutman, TB ; Bianco, AE (Springer Science and Business Media LLC, 2003-03-14)
    BACKGROUND: Ov-CHI-1 is a chitinase specifically expressed in the infective stage larvae of the human filarial parasite Onchocerca volvulus. Evidence has show that it could be a vaccine candidate, however, there is no data available regarding the immunological status of people naturally exposed to infective stage larvae and thus provoked by this antigen. METHOD: We analysed the Ov-CHI-1-specific immune response present in four endemic foci of human onchocerciasis (Ecuador, Nigeria, Togo and Cameroon) by enzyme-linked immunosorbent assays and T-cell proliferation assays. RESULTS: In these foci of infection, antibodies to Ov-CHI-1 were found to be present in only 22% of individuals from Ecuador, but were detected in 42-62% of infected individuals in the three foci from West Africa (Nigeria, Togo and Cameroon). There was found to be no relationship between antibody level and age, gender, or infection intensity as indicated by microfilarial density and numbers of skin nodules. The isotype response to Ov-CHI-1 was dominated by the presence of IgG3, IgG1 was present to a lesser extent. Our results show a positive correlation between N- and C-termini of Ov-CHI-1 in their ability to provoke humoral and cellular immune responses in the human. Peripheral blood mononuclear cell (PBMC) proliferative responses to Ov-CHI-1 when assayed, were found to be significantly higher in the individuals from endemic areas and there was a statistically elevated response to Ov-CHI-1 in the infected individuals when compared to putative immune individuals. CONCLUSION: Ov-CHI-1 is an antigen that we have found strongly induces both humoral and cellular immune responses in humans.
  • Item
    No Preview Available
    A Large Proportion of P. falciparum Isolates in the Amazon Region of Peru Lack pfhrp2 and pfhrp3: Implications for Malaria Rapid Diagnostic Tests
    Gamboa, D ; Ho, M-F ; Bendezu, J ; Torres, K ; Chiodini, PL ; Barnwell, JW ; Incardona, S ; Perkins, M ; Bell, D ; McCarthy, J ; Cheng, Q ; Bjorkman, A (PUBLIC LIBRARY SCIENCE, 2010-01-25)
    BACKGROUND: Malaria rapid diagnostic tests (RDTs) offer significant potential to improve the diagnosis of malaria, and are playing an increasing role in malaria case management, control and elimination. Peru, along with other South American countries, is moving to introduce malaria RDTs as components of malaria control programmes supported by the Global Fund for AIDS, TB and malaria. The selection of the most suitable malaria RDTs is critical to the success of the programmes. METHODS: Eight of nine microscopy positive P. falciparum samples collected in Iquitos, Peru tested negative or weak positive using HRP2-detecting RDTs. These samples were tested for the presence of pfhrp2 and pfhrp3 and their flanking genes by PCR, as well as the presence of HRP proteins by ELISA. To investigate for geographic extent of HRP-deleted parasites and their temporal occurrence a retrospective study was undertaken on 148 microscopy positive P. falciparum samples collected in different areas of the Amazon region of Peru. FINDINGS: Eight of the nine isolates lacked the pfhrp2 and/or pfhrp3 genes and one or both flanking genes, and the absence of HRP was confirmed by ELISA. The retrospective study showed that 61 (41%) and 103 (70%) of the 148 samples lacked the pfhrp2 or pfhrp3 genes respectively, with 32 (21.6%) samples lacking both hrp genes. CONCLUSIONS: This is the first documentation of P. falciparum field isolates lacking pfhrp2 and/or pfhrp3. The high frequency and wide distribution of different parasites lacking pfhrp2 and/or pfhrp3 in widely dispersed areas in the Peruvian Amazon implies that malaria RDTs targeting HRP2 will fail to detect a high proportion of P. falciparum in malaria-endemic areas of Peru and should not be used. RDTs detecting parasite LDH or aldolase and quality microscopy should be use for malaria diagnosis in this region. There is an urgent need for investigation of the abundance and geographic distribution of these parasites in Peru and neighbouring countries.
  • Item
    Thumbnail Image
    Diurnal variation in expired breath volatiles in malaria-infected and healthy volunteers
    Berna, AZ ; McCarthy, JS ; Wang, XR ; Michie, M ; Bravo, FG ; Cassells, J ; Trowell, SC (IOP Publishing Ltd, 2018-10)
    We previously showed that thioether levels in the exhaled breath volatiles of volunteers undergoing controlled human malaria infection (CHMI) with P. falciparum increase as infection progresses. In this study, we show that thioethers have diurnal cyclical increasing patterns and their levels are significantly higher in P. falciparum CHMI volunteers compared to those of healthy volunteers. The synchronized cycle and elevation of thioethers were not present in P. vivax-infection, therefore it is likely that the thioethers are associated with unique factors in the pathology of P. falciparum. Moreover, we found that time-of-day of breath collection is important to accurately predict (98%) P. falciparum-infection. Critically, this was achieved when the disease was asymptomatic and parasitemia was below the level detectable by microscopy. Although these findings are encouraging, they show limitations because of the limited and logistically difficult diagnostic window and its utility to P. falciparum malaria only. We looked for new biomarkers in the breath of P. vivax CHMI volunteers and found that a set of terpenes increase significantly over the course of the malaria infection. The accuracy of predicting P. vivax using breath terpenes was up to 91%. Moreover, some of the terpenes were also found in the breath of P. falciparum CHMI volunteers (accuracy up to 93.5%). The results suggest that terpenes might represent better biomarkers than thioethers to predict malaria as they were not subject to malaria pathogens diurnal changes.
  • Item
    Thumbnail Image
    Model-Informed Drug Development for Malaria Therapeutics
    Andrews, KA ; Wesche, D ; McCarthy, J ; Mohrle, JJ ; Tarning, J ; Phillips, L ; Kern, S ; Grasela, T ; Insel, PA (ANNUAL REVIEWS, 2018)
    Malaria is a critical public health problem resulting in substantial morbidity and mortality, particularly in developing countries. Owing to the development of resistance toward current therapies, novel approaches to accelerate the development efforts of new malaria therapeutics are urgently needed. There have been significant advancements in the development of in vitro and in vivo experiments that generate data used to inform decisions about the potential merit of new compounds. A comprehensive disease-drug model capable of integrating discrete data from different preclinical and clinical components would be a valuable tool across all stages of drug development. This could have an enormous impact on the otherwise slow and resource-intensive process of traditional clinical drug development.
  • Item
    Thumbnail Image
    Isolation and characterization of malaria PfHRP2 specific VNAR antibody fragments from immunized shark phage display library
    Leow, CH ; Fischer, K ; Leow, CY ; Braet, K ; Cheng, Q ; McCarthy, J (BMC, 2018-10-24)
    BACKGROUND: Malaria rapid diagnostic tests (RDTs) represent an important antibody based immunoassay platform. Unfortunately, conventional monoclonal antibodies are subject to degradation shortening shelf lives of RDTs. The variable region of the receptor (VNAR) from shark has a potential as alternative to monoclonal antibodies in RDTs due to high thermal stability. METHODS: In this study, new binders derived from shark VNAR domains library were investigated. Following immunization of a wobbegong shark (Orectolobus ornatus) with three recombinant malaria biomarker proteins (PfHRP2, PfpLDH and Pvaldolase), a single domain antibody (sdAb) library was constructed from splenocytes. Target-specific VNAR phage were isolated by panning. One specific clone was selected for expression in Escherichia coli expression system, and study of binding reactivity undertaken. RESULTS: The primary VNAR domain library possessed a titre of 1.16 × 106 pfu/mL. DNA sequence analysis showed 82.5% of isolated fragments appearing to contain an in-frame sequence. After multiple rounds of biopanning, a highly dominant clone specific to PfHRP2 was identified and selected for protein production in an E. coli expression system. Biological characterization showed the recombinant protein expressed in periplasmic has better detection sensitivity than that of cytoplasmic proteins. Assays of binding activity indicated that its reactivity was inferior to the positive control mAb C1-13. CONCLUSIONS: Target-specific bacteriophage VNARs were successfully isolated after a series of immunization, demonstrating that phage display technology is a useful tool for selection of antigen binders. Generation of new binding reagents such as VNAR antibodies that specifically recognize the malaria biomarkers represents an appealing approach to improve the performance of RDTs.
  • Item
    Thumbnail Image
    Soil-Transmitted Helminths in Children in a Remote Aboriginal Community in the Northern Territory: Hookworm is Rare but Strongyloides stercoralis and Trichuris trichiura Persist
    Holt, DC ; Shield, J ; Harris, TM ; Mounsey, KE ; Aland, K ; McCarthy, JS ; Currie, BJ ; Kearns, TM (MDPI, 2017-12)
    (1) Background: soil-transmitted helminths are a problem worldwide, largely affecting disadvantaged populations. The little data available indicates high rates of infection in some remote Aboriginal communities in Australia. Studies of helminths were carried out in the same remote community in the Northern Territory in 1994⁻1996 and 2010⁻2011; (2) Methods: fecal samples were collected from children aged <10 years and examined for helminths by direct smear microscopy. In the 2010⁻2011 study, some fecal samples were also analyzed by agar plate culture and PCR for Strongyloides stercoralis DNA. Serological analysis of fingerprick dried blood spots using a S. stercoralis NIE antigen was also conducted; (3) Results and Conclusions: a reduction in fecal samples positive for S. stercoralis, hookworm and Trichuris trichiura was seen between the studies in 1994⁻1996 and 2010⁻2011, likely reflecting public health measures undertaken in the region to reduce intestinal helminths. Comparison of methods to detect S. stercoralis showed that PCR of fecal samples and serological testing of dried blood spots was at least as sensitive as direct smear microscopy and agar plate culture. These methods have advantages for use in remote field studies.
  • Item
    Thumbnail Image
    Assessing Plasmodium falciparum transmission in mosquito-feeding assays using quantitative PCR
    Wang, CYT ; McCarthy, JS ; Stone, WJ ; Bousema, T ; Collins, KA ; Bialasiewicz, S (BMC, 2018-07-05)
    BACKGROUND: Evaluating the efficacy of transmission-blocking interventions relies on mosquito-feeding assays, with transmission typically assessed by microscopic identification of oocysts in mosquito midguts; however, microscopy has limited throughput, sensitivity and specificity. Where low prevalence and intensity mosquito infections occur, as observed during controlled human malaria infection studies or natural transmission, a reliable method for detection and quantification of low-level midgut infection is required. Here, a semi-automated, Taqman quantitative PCR (qPCR) assay sufficiently sensitive to detect a single-oocyst midgut infection is described. RESULTS: Extraction of genomic DNA from Anopheles stephensi midguts using a semi-automated extraction process was shown to have equivalent extraction efficiency to manual DNA extraction. An 18S Plasmodium falciparum qPCR assay was adapted for quantitative detection of P. falciparum midgut oocyst infection using synthetic DNA standards. The assay was validated for sensitivity and specificity, and the limit of detection was 0.7 genomes/µL (95% CI 0.4-1.6 genomes/µL). All microscopy-confirmed oocyst infected midgut samples were detected by qPCR, including all single-oocyst positive midguts. The genome number per oocyst was assessed 8-9 days after feeding assay using both qPCR and droplet digital PCR and was 3722 (IQR: 2951-5453) and 3490 (IQR: 2720-4182), respectively. CONCLUSIONS: This semi-automated qPCR method enables accurate detection of low-level P. falciparum oocyst infections in mosquito midguts, and may improve the sensitivity, specificity and throughput of assays used to evaluate candidate transmission-blocking interventions.
  • Item
    Thumbnail Image
    Evaluation of safety and immunogenicity of a group A streptococcus vaccine candidate (MJ8VAX) in a randomized clinical trial
    Sekuloski, S ; Batzloff, MR ; Griffin, P ; Parsonage, W ; Elliott, S ; Hartas, J ; O'Rourke, P ; Marquart, L ; Pandey, M ; Rubin, FA ; Carapetis, J ; McCarthy, J ; Good, MF ; Moreland, NJ (PUBLIC LIBRARY SCIENCE, 2018-07-02)
    BACKGROUND: Group A streptococcus (GAS) is a serious human pathogen that affects people of different ages and socio-economic levels. Although vaccination is potentially one of the most effective methods to control GAS infection and its sequelae, few prototype vaccines have been investigated in humans. In this study, we report the safety and immunogenicity of a novel acetylated peptide-protein conjugate vaccine candidate MJ8VAX (J8-DT), when delivered intramuscularly to healthy adults. METHODS: A randomized, double-blinded, controlled Phase I clinical trial was conducted in 10 healthy adult participants. Participants were randomized 4:1 to receive the vaccine candidate (N = 8) or placebo (N = 2). A single dose of the vaccine candidate (MJ8VAX), contained 50 μg of peptide conjugate (J8-DT) adsorbed onto aluminium hydroxide and re-suspended in PBS in a total volume of 0.5 mL. Safety of the vaccine candidate was assessed by monitoring local and systemic adverse reactions following intramuscular administration. The immunogenicity of the vaccine was assessed by measuring the levels of peptide (anti-J8) and toxoid carrier (anti-DT)-specific antibodies in serum samples. RESULTS: No serious adverse events were reported over 12 months of study. A total of 13 adverse events (AEs) were recorded, two of which were assessed to be associated with the vaccine. Both were mild in severity. No local reactogenicity was recorded in any of the participants. MJ8VAX was shown to be immunogenic, with increase in vaccine-specific antibodies in the participants who received the vaccine. The maximum level of vaccine-specific antibodies was detected at 28 days post immunization. The level of these antibodies decreased with time during follow-up. Participants who received the vaccine also had a corresponding increase in anti-DT serum antibodies. CONCLUSIONS: Intramuscular administration of MJ8VAX was demonstrated to be safe and immunogenic. The presence of DT in the vaccine formulation resulted in a boost in the level of anti-DT antibodies. TRIAL REGISTRATION: ACTRN12613000030774.