Melbourne Medical School Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    Thumbnail Image
    Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges
    Kyaw, T ; Peter, K ; Li, Y ; Tipping, P ; Toh, B-H ; Bobik, A (WILEY, 2017-11)
    UNLABELLED: Cytotoxic lymphocytes encompass natural killer lymphocytes (cells) and cytotoxic T cells that include CD8+ T cells, natural killer (NK) T cells, γ, δ (γδ)-T cells and human CD4 + CD28- T cells. These cells play critical roles in inflammatory diseases and in controlling cancers and infections. Cytotoxic lymphocytes can be activated via a number of mechanisms that may involve dendritic cells, macrophages, cytokines or surface proteins on stressed cells. Upon activation, they secrete pro-inflammatory cytokines as well as anti-inflammatory cytokines, chemokines and cytotoxins to promote inflammation and the development of atherosclerotic lesions including vulnerable lesions, which are strongly implicated in myocardial infarctions and strokes. Here, we review the mechanisms that activate and regulate cytotoxic lymphocyte activity, including activating and inhibitory receptors, cytokines, chemokine receptors-chemokine systems utilized to home to inflamed lesions and cytotoxins and cytokines through which they affect other cells within lesions. We also examine their roles in human and mouse models of atherosclerosis and the mechanisms by which they exert their pathogenic effects. Finally, we discuss strategies for therapeutically targeting these cells to prevent the development of atherosclerotic lesions and vulnerable plaques and the challenge of developing highly targeted therapies that only minimally affect the body's immune system, avoiding the complications, such as increased susceptibility to infections, which are currently associated with many immunotherapies for autoimmune diseases. LINKED ARTICLES: This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
  • Item
    Thumbnail Image
    Shear-sensitive nanocapsule drug release for site-specific inhibition of occlusive thrombus formation
    Molloy, CP ; Yao, Y ; Kammoun, H ; Bonnard, T ; Hoefer, T ; Alt, K ; Tovar-Lopez, F ; Rosengarten, G ; Ramsland, PA ; van der Meer, AD ; van den Berg, A ; Murphy, AJ ; Hagemeyer, CE ; Peter, K ; Westein, E (WILEY, 2017-05)
    UNLABELLED: Essentials Vessel stenosis due to large thrombus formation increases local shear 1-2 orders of magnitude. High shear at stenotic sites was exploited to trigger eptifibatide release from nanocapsules. Local delivery of eptifibatide prevented vessel occlusion without increased tail bleeding times. Local nanocapsule delivery of eptifibatide may be safer than systemic antiplatelet therapies. SUMMARY: Background Myocardial infarction and stroke remain the leading causes of mortality and morbidity. The major limitation of current antiplatelet therapy is that the effective concentrations are limited because of bleeding complications. Targeted delivery of antiplatelet drug to sites of thrombosis would overcome these limitations. Objectives Here, we have exploited a key biomechanical feature specific to thrombosis, i.e. significantly increased blood shear stress resulting from a reduction in the lumen of the vessel, to achieve site-directed delivery of the clinically used antiplatelet agent eptifibatide by using shear-sensitive phosphatidylcholine (PC)-based nanocapsules. Methods PC-based nanocapsules (2.8 × 1012 ) with high-dose encapsulated eptifibatide were introduced into microfluidic blood perfusion assays and into in vivo models of thrombosis and tail bleeding. Results Shear-triggered nanocapsule delivery of eptifibatide inhibited in vitro thrombus formation selectively under stenotic and high shear flow conditions above a shear rate of 1000 s-1 while leaving thrombus formation under physiologic shear rates unaffected. Thrombosis was effectively prevented in in vivo models of vessel wall damage. Importantly, mice infused with shear-sensitive antiplatelet nanocapsules did not show prolonged bleeding times. Conclusions Targeted delivery of eptifibatide by shear-sensitive nanocapsules offers site-specific antiplatelet potential, and may form a basis for developing more potent and safer antiplatelet drugs.
  • Item
    Thumbnail Image
    Urine proteome analysis as a discovery tool in patients with deep vein thrombosis and pulmonary embolism
    von zur Muehlen, C ; Koeck, T ; Schiffer, E ; Sackmann, C ; Zuerbig, P ; Hilgendorf, I ; Reinoehl, J ; Rivera, J ; Zirlik, A ; Hehrlein, C ; Mischak, H ; Bode, C ; Peter, K (WILEY-V C H VERLAG GMBH, 2016-05)
    PURPOSE: Early and accurate detection of deep vein thrombosis (DVT) is an important clinical need. Based on the hypothesis that urinary peptides may hold information on DVT in conjunction with pulmonary embolism (PE), the study was aimed at identifying such peptide biomarkers using capillary electrophoresis coupled mass spectrometry. EXPERIMENTAL DESIGN: Patients with symptoms of unprovoked/idiopathic DVT and/or PE were examined by doppler-sonography or angio-computed tomography. Urinary proteome analysis allowed for identification of respective peptide biomarkers. To confirm their biological relevance, we induced PE in mice and assessed human ex vivo thrombi. RESULTS: We identified 62 urinary peptides as DVT-specific biomarkers, i.e. fragments of collagen type I and a fragment of fibrinogen β-chain. The presence of fibrinogen α/β in the acute thrombus, and collagen type I and osteopontin in the older, organized thrombus was demonstrated. The classifier DVT62 established through support vector machine (SVM) modeling based on the 62 identified peptides was validated in an independent cohort of 47 subjects (six cases and 41 controls) with a sensitivity of 100% and specificity of 83%. CONCLUSIONS AND CLINICAL RELEVANCE: Urine proteome analysis enabled the detection of DVT-specific peptides, which were validated in human and mouse tissue. Furthermore, it allowed for the establishment of an urinary-proteome based classifier that is relatively specific for DVT. The data provide the basis for assessment of these biomarkers in a prospective clinical study.
  • Item
    No Preview Available
    Thrombus-Targeted Theranostic Microbubbles: A New Technology towards Concurrent Rapid Ultrasound Diagnosis and Bleeding-free Fibrinolytic Treatment of Thrombosis
    Wang, X ; Gkanatsas, Y ; Palasubramaniam, J ; Hohmann, JD ; Chen, YC ; Lim, B ; Hagemeyer, CE ; Peter, K (IVYSPRING INT PUBL, 2016)
    RATIONALE: Myocardial infarction and stroke are leading causes of morbidity/mortality. The typical underlying pathology is the formation of thrombi/emboli and subsequent vessel occlusion. Systemically administered fibrinolytic drugs are the most effective pharmacological therapy. However, bleeding complications are relatively common and this risk as such limits their broader use. Furthermore, a rapid non-invasive imaging technology is not available. Thereby, many thrombotic events are missed or only diagnosed when ischemic damage has already occurred. OBJECTIVE: Design and preclinical testing of a novel 'theranostic' technology for the rapid non-invasive diagnosis and effective, bleeding-free treatment of thrombosis. METHODS AND RESULTS: A newly created, innovative theranostic microbubble combines a recombinant fibrinolytic drug, an echo-enhancing microbubble and a recombinant thrombus-targeting device in form of an activated-platelet-specific single-chain antibody. After initial in vitro proof of functionality, we tested this theranostic microbubble both in ultrasound imaging and thrombolytic therapy using a mouse model of ferric-chloride-induced thrombosis in the carotid artery. We demonstrate the reliable highly sensitive detection of in vivo thrombi and the ability to monitor their size changes in real time. Furthermore, these theranostic microbubbles proofed to be as effective in thrombolysis as commercial urokinase but without the prolongation of bleeding time as seen with urokinase. CONCLUSIONS: We describe a novel theranostic technology enabling simultaneous diagnosis and treatment of thrombosis, as well as monitoring of success or failure of thrombolysis. This technology holds promise for major progress in rapid diagnosis and bleeding-free thrombolysis thereby potentially preventing the often devastating consequences of thrombotic disease in many patients.
  • Item
    Thumbnail Image
    Microparticles: major transport vehicles for distinct microRNAs in circulation
    Diehl, P ; Fricke, A ; Sander, L ; Stamm, J ; Bassler, N ; Htun, N ; Ziemann, M ; Helbing, T ; El-Osta, A ; Jowett, JBM ; Peter, K (OXFORD UNIV PRESS, 2012-03-15)
    AIMS: Circulating microRNAs (miRNAs) have attracted major interest as biomarkers for cardiovascular diseases. Since RNases are abundant in circulating blood, there needs to be a mechanism protecting miRNAs from degradation. We hypothesized that microparticles (MP) represent protective transport vehicles for miRNAs and that these are specifically packaged by their maternal cells. METHODS AND RESULTS: Conventional plasma preparations, such as the ones used for biomarker detection, are shown to contain substantial numbers of platelet-, leucocyte-, and endothelial cell-derived MP. To analyse the widest spectrum of miRNAs, Next Generation Sequencing was used to assess miRNA profiles of MP and their corresponding stimulated and non-stimulated cells of origin. THP-1 (monocytic origin) and human umbilical vein endothelial cell (HUVEC) MP were used for representing circulating MP at a high purity. miRNA profiles of MP differed significantly from those of stimulated and non-stimulated maternal THP-1 cells and HUVECs, respectively. Quantitative reverse transcription-polymerase chain reaction of miRNAs which have been associated with cardiovascular diseases also demonstrated significant differences in miRNA profiles between platelets and their MP. Notably, the main fraction of miRNA in plasma was localized in MP. Furthermore, miRNA profiles of MP differed significantly between patients with stable and unstable coronary artery disease. CONCLUSION: Circulating MP represent transport vehicles for large numbers of specific miRNAs, which have been associated with cardiovascular diseases. miRNA profiles of MP are significantly different from their maternal cells, indicating an active mechanism of selective 'packaging' from cells into MP. These findings describe an interesting mechanism for transferring gene-regulatory function from MP-releasing cells to target cells via MP circulating in blood.
  • Item
    Thumbnail Image
    Highly Sensitive Detection of Minimal Cardiac Ischemia using Positron Emission Tomography Imaging of Activated Platelets
    Ziegler, M ; Alt, K ; Paterson, BM ; Kanellakis, P ; Bobik, A ; Donnelly, PS ; Hagemeyer, CE ; Peter, K (NATURE PORTFOLIO, 2016-12-02)
    A reliable method for the diagnosis of minimal cardiac ischemia would meet a strong demand for the sensitive diagnosis of coronary artery disease in cardiac stress testing and risk stratification in patients with chest pain but unremarkable ECGs and biomarkers. We hypothesized that platelets accumulate early on in ischemic myocardium and a newly developed technology of non-invasive molecular PET imaging of activated platelets can thus detect minimal degrees of myocardial ischemia. To induce different degrees of minimal cardiac ischemia, the left anterior descending artery (LAD) was ligated for 10, 20 or 60 min. Mice were injected with a newly generated scFvanti-GPIIb/IIIa-64CuMeCOSar radiotracer, composed of a single-chain antibody that only binds to activated integrin GPIIb/IIIa (αIIbβIII) and thus to activated platelets, and a sarcophagine cage MeCOSar complexing the long half-life PET tracer copper-64. A single PET/CT scan was performed. Evans Blue/TTC staining to detect necrosis as well as classical serological biomarkers like Troponin I and heart-type fatty acid-binding protein (H-FABP) were negative, whereas PET imaging of activated platelets was able to detect small degrees of ischemia. Taken together, molecular PET imaging of activated platelets represents a unique and highly sensitive method to detect minimal cardiac ischemia.
  • Item
    Thumbnail Image
    A Unique Recombinant Fluoroprobe Targeting Activated Platelets Allows In Vivo Detection of Arterial Thrombosis and Pulmonary Embolism Using a Novel Three-Dimensional Fluorescence Emission Computed Tomography (FLECT) Technology
    Lim, B ; Yao, Y ; Huang, AL-I ; Yap, ML ; Flierl, U ; Palasubramaniam, J ; Zaldivia, MTK ; Wang, X ; Peter, K (IVYSPRING INT PUBL, 2017)
    Progress in pharmaceutical development is highly-dependent on preclinical in vivo animal studies. Small animal imaging is invaluable for the identification of new disease markers and the evaluation of drug efficacy. Here, we report for the first time the use of a three-dimensional fluorescence bioimager called FLuorescence Emission Computed Tomography (FLECT) for the detection of a novel recombinant fluoroprobe that is safe, easily prepared on a large scale and stably stored prior to scan. This novel fluoroprobe (Targ-Cy7) comprises a single-chain antibody-fragment (scFvTarg), which binds exclusively to activated-platelets, conjugated to a near-infrared (NIR) dye, Cy7, for detection. Upon mouse carotid artery injury, the injected fluoroprobe circulates and binds within the platelet-rich thrombus. This specific in vivo binding of the fluoroprobe to the thrombus, compared to its non-targeting control-fluoroprobe, is detected by the FLECT imager. The analyzed FLECT image quantifies the NIR signal and localizes it to the site of vascular injury. The detected fluorescence is further verified using a two-dimensional IVIS® Lumina scanner, where significant NIR fluorescence is detected in vivo at the thrombotic site, and ex vivo, at the injured carotid artery. Furthermore, fluorescence levels in various organs have also been quantified for biodistribution, with the highest fluoroprobe uptake shown to be in the injured artery. Subsequently, this live animal imaging technique is successfully employed to monitor the response of the induced thrombus to treatment over time. This demonstrates the potential of using longitudinal FLECT scanning to examine the efficacy of candidate drugs in preclinical settings. Besides intravascular thrombosis, we have shown that this non-invasive FLECT-imaging can also detect in vivo pulmonary embolism. Overall, this report describes a novel fluorescence-based preclinical imaging modality that uses an easy-to-prepare and non-radioactive recombinant fluoroprobe. This represents a unique tool to study mechanisms of thromboembolic diseases and it will strongly facilitate the in vivo testing of antithrombotic drugs. Furthermore, the non-radiation nature, low-cost, high sensitivity, and the rapid advancement of optical scanning technologies make this fluorescence imaging an attractive development for future clinical applications.
  • Item
    Thumbnail Image
    CD40L Deficiency Attenuates Diet-Induced Adipose Tissue Inflammation by Impairing Immune Cell Accumulation and Production of Pathogenic IgG- Antibodies
    Wolf, D ; Jehle, F ; Rodriguez, AO ; Dufner, B ; Hoppe, N ; Colberg, C ; Lozhkin, A ; Bassler, N ; Rupprecht, B ; Wiedemann, A ; Hilgendorf, I ; Stachon, P ; Willecke, F ; Febbraio, M ; Binder, CJ ; Bode, C ; Zirlik, A ; Peter, K ; Maedler, K (PUBLIC LIBRARY SCIENCE, 2012-03-08)
    BACKGROUND: Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L--an established marker and mediator of cardiovascular disease--induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo. METHODOLOGY/PRINCIPAL FINDINGS: WT or CD40L(-/-) mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L(-/-) mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L(-/-) mice. However, CD40L(-/-) mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L(-/-) mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels. CONCLUSION: We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.
  • Item
    Thumbnail Image
    Platelet-Derived Microvesicles in Cardiovascular Diseases
    Zaldivia, MTK ; McFadyen, JD ; Lim, B ; Wang, X ; Peter, K (FRONTIERS MEDIA SA, 2017-11-21)
    Microvesicles (MVs) circulating in the blood are small vesicles (100-1,000 nm in diameter) derived from membrane blebs of cells such as activated platelets, endothelial cells, and leukocytes. A growing body of evidence now supports the concept that platelet-derived microvesicles (PMVs), the most abundant MVs in the circulation, are important regulators of hemostasis, inflammation, and angiogenesis. Compared with healthy individuals, a large increase of circulating PMVs has been observed, particularly in patients with cardiovascular diseases. As observed in MVs from other parent cells, PMVs exert their biological effects in multiple ways, such as triggering various intercellular signaling cascades and by participating in transcellular communication by the transfer of their "cargo" of cytoplasmic components and surface receptors to other cell types. This review describes our current understanding of the potential role of PMVs in mediating hemostasis, inflammation, and angiogenesis and their consequences on the pathogenesis of cardiovascular diseases, such as atherosclerosis, myocardial infarction, and venous thrombosis. Furthermore, new developments of the therapeutic potential of PMVs for the treatment of cardiovascular diseases will be discussed.
  • Item
    Thumbnail Image
    Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques
    Htun, NM ; Chen, YC ; Lim, B ; Schiller, T ; Maghzal, GJ ; Huang, AL ; Elgass, KD ; Rivera, J ; Schneider, HG ; Wood, BR ; Stocker, R ; Peter, K (NATURE RESEARCH, 2017-07-13)
    Atherosclerosis is a major cause of mortality and morbidity, which is mainly driven by complications such as myocardial infarction and stroke. These complications are caused by thrombotic arterial occlusion localized at the site of high-risk atherosclerotic plaques, of which early detection and therapeutic stabilization are urgently needed. Here we show that near-infrared autofluorescence is associated with the presence of intraplaque hemorrhage and heme degradation products, particularly bilirubin by using our recently created mouse model, which uniquely reflects plaque instability as seen in humans, and human carotid endarterectomy samples. Fluorescence emission computed tomography detecting near-infrared autofluorescence allows in vivo monitoring of intraplaque hemorrhage, establishing a preclinical technology to assess and monitor plaque instability and thereby test potential plaque-stabilizing drugs. We suggest that near-infrared autofluorescence imaging is a novel technology that allows identification of atherosclerotic plaques with intraplaque hemorrhage and ultimately holds promise for detection of high-risk plaques in patients.Atherosclerosis diagnosis relies primarily on imaging and early detection of high-risk atherosclerotic plaques is important for risk stratification of patients and stabilization therapies. Here Htun et al. demonstrate that vulnerable atherosclerotic plaques generate near-infrared autofluorescence that can be detected via emission computed tomography.