Melbourne Medical School Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Changes in quality of life associated with fragility fractures: Australian arm of the International Cost and Utility Related to Osteoporotic Fractures Study (AusICUROS)
    Abimanyi-Ochom, J ; Watts, JJ ; Borgstrom, F ; Nicholson, GC ; Shore-Lorenti, C ; Stuart, AL ; Zhang, Y ; Iuliano, S ; Seeman, E ; Prince, R ; March, L ; Cross, M ; Winzenberg, T ; Laslett, LL ; Duque, G ; Ebeling, PR ; Sanders, KM (SPRINGER LONDON LTD, 2015-06)
    UNLABELLED: We investigated change in health-related quality of life due to fracture in Australian adults aged over 50 years. Fractures reduce quality of life with the loss sustained at least over 12 months. At a population level, the loss was equivalent to 65 days in full health per fracture. PURPOSE: We aimed to quantify the change in health-related quality of life (HRQoL) that occurred as a consequence of a fracture using the EQ-5D-3 L questionnaire. METHODS: Adults aged ≥50 years with a low to moderate energy fracture were recruited from eight study centres across Australia. This prospective study included an 18-month follow-up of participants recruited within 2 weeks of a fracture (hip, wrist, humerus, vertebral and ankle). Information collected at baseline and 4, 12 and 18 months included characteristics of participants such as income level, education and prior fracture status. At 12 months post-fracture, the cumulative loss of quality of life was estimated using multivariate regression analysis to identify the predictors of HRQoL loss. RESULTS: Mean HRQoL for all participants before fracture was 0.86, with wrist fracture having the highest pre-fracture HRQoL (0.90), while vertebral fracture had the lowest (0.80). HRQoL declined to 0.42 in the immediate post-fracture period. Only participants with a wrist, humerus or ankle fracture returned to their pre-fracture HRQoL after 18 months. An increased loss of HRQoL over 12 months was associated with HRQoL prior to the fracture, hospitalisation, education and fracture site. The multiple regression explained 30 % of the variation in the cumulative HRQoL loss at 12 months post-fracture for all fractures. CONCLUSION: Low to moderate energy fractures reduce HRQoL, and this loss is sustained for at least 12 months or, in the case of hip and spine fractures, at least 18 months. At a population level, this represents an average loss of 65 days in full health per fragility fracture. This significant burden reinforces the need for cost-effective fracture prevention strategies.
  • Item
    Thumbnail Image
    Glucose-loading reduces bone remodeling in women and osteoblast function in vitro
    Levinger, I ; Seeman, E ; Jerums, G ; McConell, GK ; Rybchyn, MS ; Cassar, S ; Byrnes, E ; Selig, S ; Mason, RS ; Ebeling, PR ; Brennan-Speranza, TC (WILEY, 2016-02)
    Aging is associated with a reduction in osteoblast life span and the volume of bone formed by each basic multicellular unit. Each time bone is resorbed, less is deposited producing microstructural deterioration. Aging is also associated with insulin resistance and hyperglycemia, either of which may cause, or be the result of, a decline in undercarboxylated osteocalcin (ucOC), a protein produced by osteoblasts that increases insulin sensitivity. We examined whether glucose-loading reduces bone remodeling and ucOC in vivo and osteoblast function in vitro, and so compromises bone formation. We administered an oral glucose tolerance test (OGTT) to 18 pre and postmenopausal, nondiabetic women at rest and following exercise and measured serum levels of bone remodeling markers (BRMs) and ucOC. We also assessed whether increasing glucose concentrations with or without insulin reduced survival and activity of cultured human osteoblasts. Glucose-loading at rest and following exercise reduced BRMs in pre and postmenopausal women and reduced ucOC in postmenopausal women. Higher glucose correlated negatively, whereas insulin correlated positively, with baseline BRMs and ucOC. The increase in serum glucose following resting OGTT was associated with the reduction in bone formation markers. D-glucose (>10 mmol L(-1)) increased osteoblast apoptosis, reduced cell activity and osteocalcin expression compared with 5 mmol L(-1). Insulin had a protective effect on these parameters. Collagen expression in vitro was not affected in this time course. In conclusion, glucose exposure reduces BRMs in women and exercise failed to attenuate this suppression effect. The suppressive effect of glucose on BRMs may be due to impaired osteoblast work and longevity. Whether glucose influences material composition and microstructure remains to be determined.
  • Item
    Thumbnail Image
    The Effect of Acute Exercise on Undercarboxylated Osteocalcin and Insulin Sensitivity in Obese Men
    Levinger, I ; Jerums, G ; Stepto, NK ; Parker, L ; Serpiello, FR ; McConell, GK ; Anderson, M ; Hare, DL ; Byrnes, E ; Ebeling, PR ; Seeman, E (WILEY, 2014-12)
    Acute exercise improves insulin sensitivity for hours after the exercise is ceased. The skeleton contributes to glucose metabolism and insulin sensitivity via osteocalcin (OC) in its undercarboxylated (ucOC) form in mice. We tested the hypothesis that insulin sensitivity over the hours after exercise is associated with circulating levels of ucOC. Eleven middle-aged (58.1 ± 2.2 years mean ± SEM), obese (body mass index [BMI] = 33.1 ± 1.4 kg/m(2) ) nondiabetic men completed a euglycemic-hyperinsulinemic clamp at rest (rest-control) and at 60 minutes after exercise (4 × 4 minutes of cycling at 95% of HRpeak ). Insulin sensitivity was determined by glucose infusion rate relative to body mass (GIR, mL/kg/min) as well as GIR per unit of insulin (M-value). Blood samples and five muscle biopsies were obtained; two at the resting-control session, one before and one after clamping, and three in the exercise session, at rest, 60 minutes after exercise, and after the clamp. Exercise increased serum ucOC (6.4 ± 2.1%, p = 0.013) but not total OC (p > 0.05). Blood glucose was ∼6% lower and insulin sensitivity was ∼35% higher after exercise compared with control (both p < 0.05). Phosphorylated (P)-AKT (Ak thymoma) was higher after exercise and insulin compared with exercise alone (no insulin) and insulin alone (no exercise, all p < 0.05). In a multiple-linear regression including BMI, age, and aerobic fitness, ucOC was associated with whole-body insulin sensitivity at rest (β = 0.59, p = 0.023) and after exercise (β = 0.66, p = 0.005). Insulin sensitivity, after acute exercise, is associated with circulating levels of ucOC in obese men. Whether ucOC has a direct effect on skeletal muscle insulin sensitivity after exercise is yet to be determined.