Melbourne Medical School Collected Works - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Defective AMPK regulation of cholesterol metabolism accelerates atherosclerosis by promoting HSPC mobilization and myelopoiesis
    Lee, MKS ; Cooney, OD ; Lin, X ; Nadarajah, S ; Dragoljevic, D ; Huynh, K ; Onda, D-A ; Galic, S ; Meikle, PJ ; Edlund, T ; Fullerton, MD ; Kemp, BE ; Murphy, AJ ; Loh, K (ELSEVIER, 2022-07)
    OBJECTIVES: Dysregulation of cholesterol metabolism in the liver and hematopoietic stem and progenitor cells (HSPCs) promotes atherosclerosis development. Previously, it has been shown that HMG-CoA-Reductase (HMGCR), the rate-limiting enzyme in the mevalonate pathway, can be phosphorylated and inactivated by the metabolic stress sensor AMP-activated protein kinase (AMPK). However, the physiological significance of AMPK regulation of HMGCR to atherogenesis has yet to be elucidated. The aim of this study was to determine the role of AMPK/HMGCR axis in the development of atherosclerosis. METHODS: We have generated a novel atherosclerotic-prone mouse model with defects in the AMPK regulation of HMGCR (Apoe-/-/Hmgcr KI mice). Atherosclerotic lesion size, plaque composition, immune cell and lipid profiles were assessed in Apoe-/- and Apoe-/-/Hmgcr KI mice. RESULTS: In this study, we showed that both male and female atherosclerotic-prone mice with a disruption of HMGCR regulation by AMPK (Apoe-/-/Hmgcr KI mice) display increased aortic lesion size concomitant with an increase in plaque-associated macrophages and lipid accumulation. Consistent with this, Apoe-/-/Hmgcr KI mice exhibited an increase in total circulating cholesterol and atherogenic monocytes, Ly6-Chi subset. Mechanistically, increased circulating atherogenic monocytes in Apoe-/-/Hmgcr KI mice was associated with enhanced egress of bone marrow HSPCs and extramedullary myelopoiesis, driven by a combination of elevated circulating 27-hydroxycholesterol and intracellular cholesterol in HSPCs. CONCLUSIONS: Our results uncovered a novel signalling pathway involving AMPK-HMGCR axis in the regulation of cholesterol homeostasis in HSPCs, and that inhibition of this regulatory mechanism accelerates the development and progression of atherosclerosis. These findings provide a molecular basis to support the use of AMPK activators that currently undergoing Phase II clinical trial such as O-3O4 and PXL 770 for reducing atherosclerotic cardiovascular disease risks.
  • Item
    No Preview Available
    Characterization of the circulating and tissue-specific alterations to the lipidome in response to moderate and major cold stress in mice
    Pernes, G ; Morgan, PK ; Huynh, K ; Mellett, NA ; Meikle, PJ ; Murphy, AJ ; Henstridge, DC ; Lancaster, GI (AMER PHYSIOLOGICAL SOC, 2021-02)
    This study analyzed the effects of 24 h of cold stress (22°C or 5°C vs. mice maintained at 30 °C) on the plasma, brown adipose tissue (BAT), subcutaneous (SubQ) and epididymal (Epi) white adipose tissue (WAT), liver, and skeletal muscle lipidome of mice. Using mass spectrometry-lipidomics, 624 lipid species were detected, of which 239 were significantly altered in plasma, 134 in BAT, and 51 in the liver. In plasma, acylcarnitines and free fatty acids were markedly increased at 5°C. Plasma triacylglycerols (TGs) were reduced at 22°C and 5°C. We also identified ether lipids as a novel, cold-induced lipid class. In BAT, TGs were the principal lipid class affected by cold stress, being significantly reduced at both 22°C and 5°C. Interestingly, although BAT TG species were uniformly affected at 5°C, at 22°C we observed species-dependent effects, with TGs containing longer and more unsaturated fatty acids particularly sensitive to the effects of cold. In the liver, TGs were the most markedly affected lipid class, increasing in abundance at 5 °C. TGs containing longer and more unsaturated fatty acids accumulated to a greater degree. Our work demonstrates the following: 1) acute exposure to moderate (22°C) cold stress alters the plasma and BAT lipidome; although this effect is markedly less pronounced than at 5°C. 2) Cold stress at 5°C dramatically alters the plasma lipidome, with ether lipids identified as a novel lipid class altered by cold exposure. 3) Cold-induced alterations in liver and BAT TG levels are not uniform, with changes being influenced by acyl chain composition.
  • Item
    Thumbnail Image
    Macrophage polarization state affects lipid composition and the channeling of exogenous fatty acids into endogenous lipid pools
    Morgan, PK ; Huynh, K ; Pernes, G ; Miotto, PM ; Mellett, NA ; Giles, C ; Meikle, PJ ; Murphy, AJ ; Lancaster, G (ELSEVIER, 2021-12)
    Adipose-tissue-resident macrophages (ATMs) maintain metabolic homeostasis but also contribute to obesity-induced adipose tissue inflammation and metabolic dysfunction. Central to these contrasting effects of ATMs on metabolic homeostasis is the interaction of macrophages with fatty acids. Fatty acid levels are increased within adipose tissue in various pathological and physiological conditions, but appear to initiate inflammatory responses only upon interaction with particular macrophage subsets within obese adipose tissue. The molecular basis underlying these divergent outcomes is likely due to phenotypic differences between ATM subsets, although how macrophage polarization state influences the metabolism of exogenous fatty acids is relatively unknown. Herein, using stable isotope-labeled and nonlabeled fatty acids in combination with mass spectrometry lipidomics, we show marked differences in the utilization of exogenous fatty acids within inflammatory macrophages (M1 macrophages) and macrophages involved in tissue homeostasis (M2 macrophages). Specifically, the accumulation of exogenous fatty acids within triacylglycerols and cholesterol esters is significantly higher in M1 macrophages, while there is an increased enrichment of exogenous fatty acids within glycerophospholipids, ether lipids, and sphingolipids in M2 macrophages. Finally, we show that functionally distinct ATM populations in vivo have distinct lipid compositions. Collectively, this study identifies new aspects of the metabolic reprogramming that occur in distinct macrophage polarization states. The channeling of exogenous fatty acids into particular lipid synthetic pathways may contribute to the sensitivity/resistance of macrophage subsets to the inflammatory effects of increased environmental fatty acid levels.
  • Item
    Thumbnail Image
    Shark liver oil supplementation enriches endogenous plasmalogens and reduces markers of dyslipidemia and inflammation
    Paul, S ; Smith, AAT ; Culham, K ; Gunawan, KA ; Weir, JM ; Cinel, MA ; Jayawardana, KS ; Mellett, NA ; Lee, MKS ; Murphy, AJ ; Lancaster, GI ; Nestel, PJ ; Kingwell, BA ; Meikle, PJ (ELSEVIER, 2021)
    Plasmalogens are membrane glycerophospholipids with diverse biological functions. Reduced plasmalogen levels have been observed in metabolic diseases; hence, increasing their levels might be beneficial in ameliorating these conditions. Shark liver oil (SLO) is a rich source of alkylglycerols that can be metabolized into plasmalogens. This study was designed to evaluate the impact of SLO supplementation on endogenous plasmalogen levels in individuals with features of metabolic disease. In this randomized, double-blind, placebo-controlled cross-over study, the participants (10 overweight or obese males) received 4-g Alkyrol® (purified SLO) or placebo (methylcellulose) per day for 3 weeks followed by a 3-week washout phase and were then crossed over to 3 weeks of the alternate placebo/Alkyrol® treatment. SLO supplementation led to significant changes in plasma and circulatory white blood cell lipidomes, notably increased levels of plasmalogens and other ether lipids. In addition, SLO supplementation significantly decreased the plasma levels of total free cholesterol, triglycerides, and C-reactive protein. These findings suggest that SLO supplementation can enrich plasma and cellular plasmalogens and this enrichment may provide protection against obesity-related dyslipidemia and inflammation.
  • Item
    Thumbnail Image
    Stable Isotopic Tracer Phospholipidomics Reveals Contributions of Key Phospholipid Biosynthetic Pathways to Low Hepatocyte Phosphatidylcholine to Phosphatidylethanolamine Ratio Induced by Free Fatty Acids
    Peng, K-Y ; Barlow, CK ; Kammoun, H ; Mellett, NA ; Weir, JM ; Murphy, AJ ; Febbraio, MA ; Meikle, PJ (MDPI, 2021-03)
    There is a strong association between hepatocyte phospholipid homeostasis and non-alcoholic fatty liver disease (NAFLD). The phosphatidylcholine to phosphatidylethanolamine ratio (PC/PE) often draws special attention as genetic and dietary disruptions to this ratio can provoke steatohepatitis and other signs of NAFLD. Here we demonstrated that excessive free fatty acid (1:2 mixture of palmitic and oleic acid) alone was able to significantly lower the phosphatidylcholine to phosphatidylethanolamine ratio, along with substantial alterations to phospholipid composition in rat hepatocytes. This involved both a decrease in hepatocyte phosphatidylcholine (less prominent) and an increase in phosphatidylethanolamine, with the latter contributing more to the lowered ratio. Stable isotopic tracer phospholipidomic analysis revealed several previously unidentified changes that were triggered by excessive free fatty acid. Importantly, the enhanced cytidine diphosphate (CDP)-ethanolamine pathway activity appeared to be driven by the increased supply of preferred fatty acid substrates. By contrast, the phosphatidylethanolamine N-methyl transferase (PEMT) pathway was restricted by low endogenous methionine and consequently low S-adenosylmethionine, which resulted in a concomitant decrease in phosphatidylcholine and accumulation of phosphatidylethanolamine. Overall, our study identified several previously unreported links in the relationship between hepatocyte free fatty acid overload, phospholipid homeostasis, and the development of NAFLD.
  • Item
    Thumbnail Image
    Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood
    Ohkawa, R ; Low, H ; Mukhamedova, N ; Fu, Y ; Lai, S-J ; Sasaoka, M ; Hara, A ; Yamazaki, A ; Kameda, T ; Horiuchi, Y ; Meikle, PJ ; Pernes, G ; Lancaster, G ; Ditiatkovski, M ; Nestel, P ; Vaisman, B ; Sviridov, D ; Murphy, A ; Remaley, AT ; Sviridov, D ; Tozuka, M (ELSEVIER, 2020-12)
    Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1-/- mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.