Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Copper Tetracyanoquinodimethane (CuTCNQ): A Metal-Organic Semiconductor for Room-Temperature Visible to Long-Wave Infrared Photodetection
    Balendhran, S ; Hussain, Z ; Shrestha, VR ; Cadusch, J ; Ye, M ; Azar, NS ; Kim, H ; Ramanathan, R ; Bullock, J ; Javey, A ; Bansal, V ; Crozier, KB (AMER CHEMICAL SOC, 2021-08-18)
    Mid-wave and long-wave infrared (MWIR and LWIR) detection play vital roles in applications that include health care, remote sensing, and thermal imaging. However, detectors in this spectral range often require complex fabrication processes and/or cryogenic cooling and are typically expensive, which motivates the development of simple alternatives. Here, we demonstrate broadband (0.43-10 μm) room-temperature photodetection based on copper tetracyanoquinodimethane (CuTCNQ), a metal-organic semiconductor, synthesized via a facile wet-chemical reaction. The CuTCNQ crystals are simply drop-cast onto interdigitated electrode chips to realize photoconductors. The photoresponse is governed by a combination of interband (0.43-3.35 μm) and midgap (3.35-10 μm) transitions. The devices show response times (∼365 μs) that would be sufficient for many infrared applications (e.g., video rate imaging), with a frequency cutoff point of 1 kHz.
  • Item
    Thumbnail Image
    Visible to Long-Wave Infrared Photodetectors based on Copper Tetracyanoquinodimethane (CuTCNQ) Crystals
    Balendhran, S ; Hussain, Z ; Shrestha, VR ; Cadusch, J ; Ye, M ; Kim, H ; Ramanathan, R ; Bullock, J ; Javey, A ; Bansal, V ; Crozier, KB (OSA - Optical Society of America, 2020-08-01)
    We demonstrate room-temperature photodetectors at wavelengths from visible (450 nm, 532 nm) to near- (850 nm), short-wave (1550 nm), mid-wave (4.5 \mu m) and long-wave (8.35 \mu m) infrared. These are based on drop-cast Cu TCNQ crystals.
  • Item
    Thumbnail Image
    Visible to long-wave infrared chip-scale spectrometers based on photodetectors with tailored responsivities and multispectral filters
    Cadusch, JJ ; Meng, J ; Craig, BJ ; Shrestha, VR ; Crozier, KB (De Gruyter Open, 2020-09-01)
    Chip-scale microspectrometers, operational across the visible to long-wave infrared spectral region will enable many remote sensing spectroscopy applications in a variety of fields including consumer electronics, process control in manufacturing, as well as environmental and agricultural monitoring. The low weight and small device footprint of such spectrometers could allow for integration into handheld, unattended vehicles or wearable-electronics based systems. This review will focus on recent developments in nanophotonic microspectrometer designs, which fall into two design categories: (i) planar filter-arrays used in conjunction with visible or IR detector arrays and (ii) microspectrometers using filter-free detector designs with tailored responsivities, where spectral filtering and photocurrent generation occur within the same nanostructure.