Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Seizure pathways: A model-based investigation
    Karoly, PJ ; Kuhlmann, L ; Soudry, D ; Grayden, DB ; Cook, MJ ; Freestone, DR ; Marinazzo, D (PUBLIC LIBRARY SCIENCE, 2018-10)
    We present the results of a model inversion algorithm for electrocorticography (ECoG) data recorded during epileptic seizures. The states and parameters of neural mass models were tracked during a total of over 3000 seizures from twelve patients with focal epilepsy. These models provide an estimate of the effective connectivity within intracortical circuits over the time course of seizures. Observing the dynamics of effective connectivity provides insight into mechanisms of seizures. Estimation of patients seizure dynamics revealed: 1) a highly stereotyped pattern of evolution for each patient, 2) distinct sub-groups of onset mechanisms amongst patients, and 3) different offset mechanisms for long and short seizures. Stereotypical dynamics suggest that, once initiated, seizures follow a deterministic path through the parameter space of a neural model. Furthermore, distinct sub-populations of patients were identified based on characteristic motifs in the dynamics at seizure onset. There were also distinct patterns between long and short duration seizures that were related to seizure offset. Understanding how these different patterns of seizure evolution arise may provide new insights into brain function and guide treatment for epilepsy, since specific therapies may have preferential effects on the various parameters that could potentially be individualized. Methods that unite computational models with data provide a powerful means to generate testable hypotheses for further experimental research. This work provides a demonstration that the hidden connectivity parameters of a neural mass model can be dynamically inferred from data. Our results underscore the power of theoretical models to inform epilepsy management. It is our hope that this work guides further efforts to apply computational models to clinical data.
  • Item
    Thumbnail Image
    Bifurcation analysis of two coupled Jansen-Rit neural mass models
    Ahmadizadeh, S ; Karoly, PJ ; Nesic, D ; Grayden, DB ; Cook, MJ ; Soudry, D ; Freestone, DR ; Cymbalyuk, G (PUBLIC LIBRARY SCIENCE, 2018-03-27)
    We investigate how changes in network structure can lead to pathological oscillations similar to those observed in epileptic brain. Specifically, we conduct a bifurcation analysis of a network of two Jansen-Rit neural mass models, representing two cortical regions, to investigate different aspects of its behavior with respect to changes in the input and interconnection gains. The bifurcation diagrams, along with simulated EEG time series, exhibit diverse behaviors when varying the input, coupling strength, and network structure. We show that this simple network of neural mass models can generate various oscillatory activities, including delta wave activity, which has not been previously reported through analysis of a single Jansen-Rit neural mass model. Our analysis shows that spike-wave discharges can occur in a cortical region as a result of input changes in the other region, which may have important implications for epilepsy treatment. The bifurcation analysis is related to clinical data in two case studies.
  • Item
    Thumbnail Image
    A Generalizable Brain-Computer Interface (BCI) Using Machine Learning for Feature Discovery
    Nurse, ES ; Karoly, PJ ; Grayden, DB ; Freestone, DR ; Lebedev, MA (PUBLIC LIBRARY SCIENCE, 2015-06-26)
    This work describes a generalized method for classifying motor-related neural signals for a brain-computer interface (BCI), based on a stochastic machine learning method. The method differs from the various feature extraction and selection techniques employed in many other BCI systems. The classifier does not use extensive a-priori information, resulting in reduced reliance on highly specific domain knowledge. Instead of pre-defining features, the time-domain signal is input to a population of multi-layer perceptrons (MLPs) in order to perform a stochastic search for the best structure. The results showed that the average performance of the new algorithm outperformed other published methods using the Berlin BCI IV (2008) competition dataset and was comparable to the best results in the Berlin BCI II (2002-3) competition dataset. The new method was also applied to electroencephalography (EEG) data recorded from five subjects undertaking a hand squeeze task and demonstrated high levels of accuracy with a mean classification accuracy of 78.9% after five-fold cross-validation. Our new approach has been shown to give accurate results across different motor tasks and signal types as well as between subjects.
  • Item
    Thumbnail Image
    Estimation of effective connectivity via data-driven neural modeling
    Freestone, DR ; Karoly, PJ ; Nesic, D ; Aram, P ; Cook, MJ ; Grayden, DB (FRONTIERS MEDIA SA, 2014-11-28)
    This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination.