Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Electrical probing of cortical excitability in patients with epilepsy
    Freestone, DR ; Kuhlmann, L ; Grayden, DB ; Burkitt, AN ; Lai, A ; Nelson, TS ; Vogrin, S ; Murphy, M ; D'Souza, W ; Badawy, R ; Nesic, D ; Cook, MJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2011-12)
    Standard methods for seizure prediction involve passive monitoring of intracranial electroencephalography (iEEG) in order to track the 'state' of the brain. This paper introduces a new method for measuring cortical excitability using an electrical probing stimulus. Electrical probing enables feature extraction in a more robust and controlled manner compared to passively tracking features of iEEG signals. The probing stimuli consist of 100 bi-phasic pulses, delivered every 10 min. Features representing neural excitability are estimated from the iEEG responses to the stimuli. These features include the amplitude of the electrically evoked potential, the mean phase variance (univariate), and the phase-locking value (bivariate). In one patient, it is shown how the features vary over time in relation to the sleep-wake cycle and an epileptic seizure. For a second patient, it is demonstrated how the features vary with the rate of interictal discharges. In addition, the spatial pattern of increases and decreases in phase synchrony is explored when comparing periods of low and high interictal discharge rates, or sleep and awake states. The results demonstrate a proof-of-principle for the method to be applied in a seizure anticipation framework. This article is part of a Supplemental Special Issue entitled The Future of Automated Seizure Detection and Prediction.
  • Item
    Thumbnail Image
    A comparison of open-loop and closed-loop stimulation strategies to control excitation of retinal ganglion cells
    Kameneva, T ; Zarelli, D ; Nesic, D ; Grayden, DB ; Burkitt, AN ; Meffin, H (Elsevier, 2014-11-01)
    Currently, open-loop stimulation strategies are prevalent in medical bionic devices. These strategies involve setting electrical stimulation that does not change in response to neural activity. We investigate through simulation the advantages of using a closed-loop strategy that sets stimulation level based on continuous measurement of the level of neural activity. We propose a model-based controller design to control activation of retinal neurons. To deal with the lack of controllability and observability of the whole system, we use Kalman decomposition and control only the controllable and observable part. We show that the closed-loop controller performs better than the open-loop controller when perturbations are introduced into the system. We envisage that our work will give rise to more investigations of the closed-loop techniques in basic neuroscience research and in clinical applications of medical bionics.
  • Item
    Thumbnail Image
    On synchronization of networks of Wilson-Cowan oscillators with diffusive coupling
    Ahmadizadeh, S ; Nesic, D ; Freestone, DR ; Grayden, DB (PERGAMON-ELSEVIER SCIENCE LTD, 2016-09)
    We investigate the problem of synchronization in a network of homogeneous Wilson-Cowan oscillators with diffusive coupling. Such networks can be used to model the behavior of populations of neurons in cortical tissue, referred to as neural mass models. A new approach is proposed to address conditions for local synchronization for this type of neural mass models. By analyzing the linearized model around a limit cycle, we study synchronization within a network with direct coupling. We use both analytical and numerical approaches to link the presence or absence of synchronized behavior to the location of eigenvalues of the Laplacian matrix. For the analytical part, we apply two-time scale averaging and the Chetaev theorem, while, for the remaining part, we use a recently proposed numerical approach. Sufficient conditions are established to highlight the effect of network topology on synchronous behavior when the interconnection is undirected. These conditions are utilized to address points that have been previously reported in the literature through simulations: synchronization might persist or vanish in the presence of perturbation in the interconnection gains. Simulation results confirm and illustrate our results.
  • Item
    Thumbnail Image
    Bifurcation analysis of two coupled Jansen-Rit neural mass models
    Ahmadizadeh, S ; Karoly, PJ ; Nesic, D ; Grayden, DB ; Cook, MJ ; Soudry, D ; Freestone, DR ; Cymbalyuk, G (PUBLIC LIBRARY SCIENCE, 2018-03-27)
    We investigate how changes in network structure can lead to pathological oscillations similar to those observed in epileptic brain. Specifically, we conduct a bifurcation analysis of a network of two Jansen-Rit neural mass models, representing two cortical regions, to investigate different aspects of its behavior with respect to changes in the input and interconnection gains. The bifurcation diagrams, along with simulated EEG time series, exhibit diverse behaviors when varying the input, coupling strength, and network structure. We show that this simple network of neural mass models can generate various oscillatory activities, including delta wave activity, which has not been previously reported through analysis of a single Jansen-Rit neural mass model. Our analysis shows that spike-wave discharges can occur in a cortical region as a result of input changes in the other region, which may have important implications for epilepsy treatment. The bifurcation analysis is related to clinical data in two case studies.
  • Item
    Thumbnail Image
    Spike history neural response model
    Kameneva, T ; Abramian, M ; Zarelli, D ; Nesic, D ; Burkitt, AN ; Meffin, H ; Grayden, DB (SPRINGER, 2015-06)
    There is a potential for improved efficacy of neural stimulation if stimulation levels can be modified dynamically based on the responses of neural tissue in real time. A neural model is developed that describes the response of neurons to electrical stimulation and that is suitable for feedback control neuroprosthetic stimulation. Experimental data from NZ white rabbit retinae is used with a data-driven technique to model neural dynamics. The linear-nonlinear approach is adapted to incorporate spike history and to predict the neural response of ganglion cells to electrical stimulation. To validate the fitness of the model, the penalty term is calculated based on the time difference between each simulated spike and the closest spike in time in the experimentally recorded train. The proposed model is able to robustly predict experimentally observed spike trains.
  • Item
    Thumbnail Image
    Estimation of effective connectivity via data-driven neural modeling
    Freestone, DR ; Karoly, PJ ; Nesic, D ; Aram, P ; Cook, MJ ; Grayden, DB (FRONTIERS MEDIA SA, 2014-11-28)
    This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination.