Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Effect of ECG-derived respiration (EDR) on modeling ventricular repolarization dynamics in different physiological and psychological conditions
    Imam, MH ; Karmakar, CK ; Khandoker, AH ; Palaniswami, M (SPRINGER HEIDELBERG, 2014-10)
    Ventricular repolarization dynamics is an important predictor of the outcome in cardiovascular diseases. Mathematical modeling of the heart rate variability (RR interval variability) and ventricular repolarization variability (QT interval variability) is one of the popular methods to understand the dynamics of ventricular repolarization. Although ECG derived respiration (EDR) was previously suggested as a surrogate of respiration, but the effect of respiratory movement on ventricular repolarization dynamics was not studied. In this study, the importance of considering the effect of respiration and the validity of using EDR as a surrogate of respiration for linear parametric modeling of ventricular repolarization variability is studied in two cases with different physiological and psychological conditions. In the first case study, we used 20 young and 20 old healthy subjects' ECG and respiration data from Fantasia database at Physionet to analyze a bivariate QT-RR and a trivariate [Formula: see text] model structure to study the aging effect on cardiac repolarization variability. In the second study, we used 16 healthy subjects' data from drivedb (stress detection for automobile drivers) database at Physionet to do the same analysis for different psychological condition (i.e., in stressed and no stress condition). The results of our study showed that model having respiratory information (QT-RR-RESP and QT-RR-EDR) gave significantly better fit value (p < 0.05) than that of found from the QT-RR model. EDR showed statistically similar (p > 0.05) performance as that of respiration as an exogenous model input in describing repolarization variability irrespective of age and different mental conditions. Another finding of our study is that both respiration and EDR-based models can significantly (p < 0.05) differentiate the ventricular repolarization dynamics between healthy subjects of different age groups and with different psychological conditions, whereas models without respiration or EDR cannot distinguish between the groups. These results established the importance of using respiration and the validity of using EDR as a surrogate of respiration in the absence of respiration signal recording in linear parametric modeling of ventricular repolarization variability in healthy subjects.
  • Item
    No Preview Available
    Analyzing systolic-diastolic interval interaction characteristics in diabetic cardiac autonomic neuropathy progression
    Imam, MH ; Karmakar, CK ; Jelinek, HF ; Palaniswami, M ; Khandoker, AH (Institute of Electrical and Electronics Engineers (IEEE), 2015-01-01)
    Cardiac autonomic neuropathy (CAN), one of the major complications in diabetes, if detected at the subclinical stage allows for effective treatment and avoiding further complication including cardiovascular pathology. Surface ECG (Electrocardiogram)-based diagnosis of CAN is useful to overcome the limitation of existing cardiovascular autonomic reflex tests traditionally used for CAN identification in clinical settings. The aim of this paper is to analyze the changes in the mechanical function of the ventricles in terms of systolic-diastolic interval interaction (SDI) from a surface ECG to assess the severity of CAN progression [no CAN, early CAN (ECAN) or subclinical CAN, and definite CAN (DCAN) or clinical CAN]. ECG signals recorded in supine resting condition from 72 diabetic subjects without CAN (CAN-) and 70 diabetic subjects with CAN were analyzed in this paper. The severity of CAN was determined by Ewing's Cardiovascular autonomic reflex tests. Fifty-five subjects of the CAN group had ECAN and 15 subjects had DCAN. In this paper, we propose an improved version of the SDI parameter (i.e., TQ/RR interval ratio) measured from the electrical diastolic interval (i.e., TQ interval) and the heart rate interval (i.e., RR interval). The performance of the proposed SDI measure was compared with the performance of the existing SDI measure (i.e., QT/TQ interval ratio). The proposed SDI parameter showed significant differences among three groups (no CAN, ECAN, and DCAN). In addition, the proposed SDI parameter was found to be more sensitive in detecting CAN progression than other ECG interval-based features traditionally used for CAN diagnosis. The modified SDI parameter might be used as an alternative measure for the Ewing autonomic reflex tests to identify CAN progression for those subjects who are unable to perform the traditional tests. These findings could also complement the echocardiographic findings of the left ventricular diastolic dysfunction by providing additional information about alteration in systolic and diastolic intervals in heart failure.