Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Further results on robustness of linear control systems with quantized feedback
    Kameneva, T ; Nesic, D (IEEE, 2007-01-01)
    This paper extends results from [5], where input-to-state stabilization (ISS) of linear systems with quantized feedback was considered. In this paper, we show that using the scheme proposed in [5] it is also possible to achieve (nonlinear gain) l2 stabilization for linear systems.
  • Item
    Thumbnail Image
    On mismatch between initializations at coder/decoder in quantized control
    Kameneva, T ; Nesic, D (Elsevier BV, 2008-12-01)
    This paper analyzes the stability of linear systems with quantized feedback in the presence of a mismatch between the initial conditions at the coder and decoder. We show that using the scheme proposed in Liberzon, Nesic (2007) it is possible to achieve global exponential stability of linear systems with quantized feedback when the coder and decoder are initialized at different initial conditions.
  • Item
    Thumbnail Image
    Input-to-state stabilization of nonlinear systems with quantized feedback
    Kameneva, T ; Nesic, D (IFAC - International Federation of Automatic Control, 2008-12-01)
    This paper addresses the stabilization problem of nonlinear feedback systems with quantized measurements in the presence of bounded disturbances. This paper is an extension of Liberzon, Nesic (2007) to nonlinear systems. Using the scheme proposed in Liberzon, Nesic (2007), we show that input-to-state stability with respect to bounded disturbances is achievable for nonlinear systems with quantized feedback.
  • Item
    Thumbnail Image
    Retinal ganglion cells electrophysiology: the effect of cell morphology on impulse waveform
    Maturana, MI ; Wong, R ; Cloherty, SL ; Ibbotson, MR ; Hadjinicolaou, AE ; Grayden, DB ; Burkitt, AN ; Meffin, H ; O'Brien, BJ ; Kameneva, T (IEEE, 2013)
    There are 16 morphologically defined classes of rats retinal ganglion cells (RGCs). Using computer simulation of a realistic anatomically correct A1 mouse RGC, we investigate the effect of the cell's morphology on its impulse waveform, using the first-, and second-order time derivatives as well as the phase plot features. Using whole cell patch clamp recordings, we recorded the impulse waveform for each of the rat RGCs types. While we found some clear differences in many features of the impulse waveforms for A2 and B2 cells compared to other cell classes, many cell types did not show clear differences.