Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Ultrasensitive and label-free biosensor for the detection of Plasmodium falciparum histidine-rich protein II in saliva.
    Soraya, GV ; Abeyrathne, CD ; Buffet, C ; Huynh, DH ; Uddin, SM ; Chan, J ; Skafidas, E ; Kwan, P ; Rogerson, SJ (Nature Publishing Group, 2019-11-25)
    Malaria elimination is a global public health priority. To fulfil the demands of elimination diagnostics, we have developed an interdigitated electrode sensor platform targeting the Plasmodium falciparum Histidine Rich Protein 2 (PfHRP2) protein in saliva samples. A protocol for frequency-specific PfHRP2 detection in phosphate buffered saline was developed, yielding a sensitivity of 2.5 pg/mL based on change in impedance magnitude of the sensor. This protocol was adapted and optimized for use in saliva with a sensitivity of 25 pg/mL based on change in resistance. Further validation demonstrated detection in saliva spiked with PfHRP2 from clinical isolates in 8 of 11 samples. With a turnaround time of ~2 hours, the label-free platform based on impedance sensors has the potential for miniaturization into a point-of-care diagnostic device for malaria elimination.
  • Item
    Thumbnail Image
    Rapid Detection of HLA-B*57:01-Expressing Cells Using a Label-Free Interdigitated Electrode Biosensor Platform for Prevention of Abacavir Hypersensitivity in HIV Treatment
    Chan, J ; Soraya, GV ; Craig, L ; Uddin, SM ; Todaro, M ; Huynh, DH ; Abeyrathne, CD ; Kostenko, L ; McCluskey, J ; Skafidas, E ; Kwan, P (MDPI AG, 2019-08-20)
    Pre-treatment screening of individuals for human leukocyte antigens (HLA) HLA-B*57:01 is recommended for the prevention of life-threatening hypersensitivity reactions to abacavir, a drug widely prescribed for HIV treatment. However, the implementation of screening in clinical practice is hindered by the slow turnaround time and high cost of conventional HLA genotyping methods. We have developed a biosensor platform using interdigitated electrode (IDE) functionalized with a monoclonal antibody to detect cells expressing HLA-B*57:01. This platform was evaluated using cell lines and peripheral blood mononuclear cells expressing different HLA-B alleles. The functionalized IDE sensor was able to specifically capture HLA-B*57:01 cells, resulting in a significant change in the impedance magnitude in 20 min. This IDE platform has the potential to be further developed to enable point-of-care HLA-B*57:01 screening