Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    Thumbnail Image
    Closeness of Solutions for Singularly Perturbed Systems via Averaging
    Deghat, M ; Ahmadizadeh, S ; Nesic, D ; Manzie, C ( 2018-09-20)
    This paper studies the behavior of singularly perturbed nonlinear differential equations with boundary-layer solutions that do not necessarily converge to an equilibrium. Using the average of the fast variable and assuming the boundary layer solutions converge to a bounded set, results on the closeness of solutions of the singularly perturbed system to the solutions of the reduced average and boundary layer systems over a finite time interval are presented. The closeness of solutions error is shown to be of order O(\sqrt(\epsilon)), where \epsilon is the perturbation parameter.
  • Item
    Thumbnail Image
    Adaptive Scan for Atomic Force Microscopy Based on Online Optimisation: Theory and Experiment
    Wang, K ; Ruppert, MG ; Manzie, C ; Nesic, D ; Yong, YK ( 2019-02-11)
    A major challenge in Atomic Force Microscopy (AFM) is to reduce the scan duration while retaining the image quality. Conventionally, the scan rate is restricted to a sufficiently small value in order to ensure a desirable image quality as well as a safe tip-sample contact force. This usually results in a conservative scan rate for samples that have a large variation in aspect ratio and/or for scan patterns that have a varying linear velocity. In this paper, an adaptive scan scheme is proposed to alleviate this problem. A scan line-based performance metric balancing both imaging speed and accuracy is proposed, and the scan rate is adapted such that the metric is optimised online in the presence of aspect ratio and/or linear velocity variations. The online optimisation is achieved using an extremum-seeking (ES) approach, and a semi-global practical asymptotic stability (SGPAS) result is shown for the overall system. Finally, the proposed scheme is demonstrated via both simulation and experiment.
  • Item
    Thumbnail Image
    Ordinal Optimisation for the Gaussian Copula Model
    Chin, R ; Rowe, JE ; Shames, I ; Manzie, C ; Nešić, D ( 2019-11-05)
    We present results on the estimation and evaluation of success probabilities for ordinal optimisation over uncountable sets (such as subsets of R d ). Our formulation invokes an assumption of a Gaussian copula model, and we show that the success probability can be equivalently computed by assuming a special case of additive noise. We formally prove a lower bound on the success probability under the Gaussian copula model, and numerical experiments demonstrate that the lower bound yields a reasonable approximation to the actual success probability. Lastly, we showcase the utility of our results by guaranteeing high success probabilities with ordinal optimisation.
  • Item
    Thumbnail Image
    Gaussian Processes with Monotonicity Constraints for Preference Learning from Pairwise Comparisons
    Chin, R ; Manzie, C ; Ira, A ; Nesic, D ; Shames, I (IEEE, 2018)
    In preference learning, it is beneficial to incorporate monotonicity constraints for learning utility functions when there is prior knowledge of monotonicity. We present a novel method for learning utility functions with monotonicity constraints using Gaussian process regression. Data is provided in the form of pairwise comparisons between items. Using conditions on monotonicity for the predictive function, an algorithm is proposed which uses the weighted average between prior linear and maximum a posteriori (MAP) utility estimates. This algorithm is formally shown to guarantee monotonicity of the learned utility function in the dimensions desired. The algorithm is tested in a Monte Carlo simulation case study, in which the results suggest that the learned utility by the proposed algorithm performs better in prediction than the standalone linear estimate, and enforces monotonicity unlike the MAP estimate.
  • Item
    Thumbnail Image
    A machine learning approach for tuning model predictive controllers
    Ira, AS ; Shames, I ; Manzie, C ; Chin, R ; Nesic, D ; Nakada, H ; Sano, T (IEEE, 2018-01-01)
    Many industrial domains are characterized by Multiple-Input-Multiple-Output (MIMO) systems for which an explicit relationship capturing the nontrivial trade-off between the competing objectives is not available. Human experts have the ability to implicitly learn such a relationship, which in turn enables them to tune the corresponding controller to achieve the desirable closed-loop performance. However, as the complexity of the MIMO system and/or the controller increase, so does the tuning time and the associated tuning cost. To reduce the tuning cost, a framework is proposed in which a machine learning method for approximating the human-learned cost function along with an optimization algorithm for optimizing it, and consequently tuning the controller, are employed. In this work the focus is on the tuning of Model Predictive Controllers (MPCs), given both the interest in their implementations across many industrial domains and the associated high degrees of freedom present in the corresponding tuning process. To demonstrate the proposed approach, simulation results for the tuning of an air path MPC controller in a diesel engine are presented.
  • Item
    Thumbnail Image
    Extremum-Seeking-Based Adaptive Scan for Atomic Force Microscopy
    Wang, K ; Manzie, C ; Nesic, D (IEEE, 2017)
    Improving the imaging speed in Atomic Force Microscopy (AFM) is of high interest due to its typically prolonged imaging duration. Conventionally, the line rate of the scan is fixed at a conservative value in order to ensure a safe tip-sample contact force even in the worst case of sample aspect ratio and linear scan speed. In this paper, an adaptive scan method is proposed to adapt the scan line rate based on the extremum-seeking control framework. A performance metric balancing both imaging speed and accuracy is proposed, and an extremum-seeking approach is designed to optimise the metric based on error feedback. Semi-global practical asymptotic stability (SGPAS) result is shown, and the proposed method is demonstrated via simulation.
  • Item
    Thumbnail Image
    Multi-time-scale observer design for state-of-charge and state-of-health of a lithium-ion battery
    Zou, C ; Manzie, C ; Nesic, D ; Kallapur, AG (ELSEVIER SCIENCE BV, 2016-12-15)
    The accurate online state estimation for some types of nonlinear singularly perturbed systems is challenging due to extensive computational requirements, ill-conditioned gains and/or convergence issues. This paper proposes a multi-time-scale estimation algorithm for a class of nonlinear systems with coupled fast and slow dynamics. Based on a boundary-layer model and a reduced model, a multi-time-scale estimator is proposed in which the design parameter sets can be tuned in different time-scales. Stability property of the estimation errors is analytically characterized by adopting a deterministic version of extended Kalman filter (EKF). This proposed algorithm is applied to estimator design for the state-of-charge (SOC) and state-of-health (SOH) in a lithium-ion battery using the developed reduced order battery models. Simulation results on a high fidelity lithium-ion battery model demonstrate that the observer is effective in estimating SOC and SOH despite a range of common errors due to model order reductions, linearisation, initialisation and noisy measurement.
  • Item
    Thumbnail Image
    Model Predictive Control for Lithium-Ion Battery Optimal Charging
    Zou, C ; Manzie, C ; Nesic, D (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2018-04)
    Charging time and lifetime are important performances for lithium-ion (Li-ion) batteries, but are often competing objectives for charging operations. Model-based charging controls are challenging due to the complicated battery system structure that is composed of nonlinear partial differential equations and exhibits multiple time-scales. This paper proposes a new methodology for battery charging control enabling an optimal tradeoff between the charging time and battery state-of-health (SOH). Using recently developed model reduction approaches, a physics-based low-order battery model is first proposed and used to formulate a model-based charging strategy. The optimal fast charging problem is formulated in the framework of tracking model predictive control (MPC). This directly considers the tracking performance for provided state-of-charge and SOH references, and explicitly addresses constraints imposed on input current and battery internal state. The capability of this proposed charging strategy is demonstrated via simulations to be effective in tracking the desirable SOH trajectories. By comparing with the constant-current constant-voltage charging protocol, the MPC-based charging appears promising in terms of both the charging time and SOH. In addition, this obtained charging strategy is practical for real-time implementation.
  • Item
    Thumbnail Image
    Hybrid Extremum Seeking for Black-Box Optimization in Hybrid Plants: An Analytical Framework
    Poveda, JI ; Kutadinata, R ; Manzie, C ; Nesic, D ; Teel, AR ; Liao, C-K (IEEE, 2018-01-01)
    This paper presents an analytical framework to design and analyze hybrid extremum seeking controllers for plants with hybrid dynamics. The extremum seeking controllers are characterized by a hybrid dither generator, a hybrid Jacobian estimator, and a hybrid dynamic optimizer. This structure allows us to consider a family of novel extremum seeking controllers that have not been studied in the literature before. Moreover, the hybrid extremum seeking controllers can be applied to plants with hybrid dynamics generating well-defined response maps. A convergence result is established for the closed -loop system by using singular perturbation theory for hybrid dynamical systems with hybrid boundary layers.
  • Item
    Thumbnail Image
    A Framework for Simplification of PDE-Based Lithium-Ion Battery Models
    Zou, C ; Manzie, C ; Nesic, D (Institute of Electrical and Electronics Engineers (IEEE), 2016)
    Simplified models are commonly used in battery management and control, despite their (often implicit) limitations in capturing the dynamic behavior of the battery across a wide range of operating conditions. This paper seeks to develop a framework for battery model simplification starting from an initial high-order physics-based model that will explicitly detail the assumptions underpinning the development of simplified battery models. Starting from the basis of a model capturing the electrochemical, thermal, electrical, and aging dynamics in a set of partial differential equations, a systematic approach based on singular perturbations and averaging is used to simplify the dynamics through identification of disparate timescales inherent in the problem. As a result, libraries of simplified models with interconnections based on the specified assumptions are obtained. A quantitative comparison of the simplified models relative to the original model is used to justify the model reductions. To demonstrate the utility of the framework, a set of battery charging strategies is evaluated at reduced computational effort on simplified models.