Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    On Privacy of Quantized Sensor Measurements through Additive Noise
    Murguia, C ; Shames, I ; Farokhi, F ; Nesic, D (IEEE, 2018-01-01)
    We study the problem of maximizing privacy of quantized sensor measurements by adding random variables. In particular, we consider the setting where information about the state of a process is obtained using noisy sensor measurements. This information is quantized and sent to a remote station through an unsecured communication network. It is desired to keep the state of the process private; however, because the network is not secure, adversaries might have access to sensor information, which could be used to estimate the process state. To avoid an accurate state estimation, we add random numbers to the quantized sensor measurements and send the sum to the remote station instead. The distribution of these random variables is designed to minimize the mutual information between the sum and the quantized sensor measurements for a desired level of distortion - how different the sum and the quantized sensor measurements are allowed to be. Simulations are presented to illustrate our results.
  • Item
    Thumbnail Image
    Security metrics and synthesis of secure control systems
    Murguia, C ; Shames, I ; Ruths, J ; Nešić, D (Elsevier Inc., 2020-05-01)
    The term stealthy has come to encompass a variety of techniques that attackers can employ to avoid being detected. In this manuscript, for a class of perturbed linear time-invariant systems, we propose two security metrics to quantify the potential impact that stealthy attacks could have on the system dynamics by tampering with sensor measurements. We provide analysis tools to quantify these metrics for given system dynamics, control, and system monitor. Then, we provide synthesis tools (in terms of semidefinite programs) to redesign controllers and monitors such that the impact of stealthy attacks is minimized and the required attack-free system performance is guaranteed.
  • Item
    Thumbnail Image
    An Unknown Input Multiobserver Approach for Estimation and Control Under Adversarial Attacks
    Yang, T ; Murguia, C ; Kuijper, M ; Nesic, D (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2021-03)
    We address the problem of state estimation, attack isolation, and control of discrete-time linear time-invariant systems under (potentially unbounded) actuator and sensor false data injection attacks. Using a bank of unknown input observers, each observer leading to an exponentially stable estimation error (in the attack-free case), we propose an observer-based estimator that provides exponential estimates of the system state despite actuator and sensor attacks. Exploiting sensor and actuator redundancy, the estimation scheme is guaranteed to work if a sufficiently small subset of sensors and actuators is under attack. Using the proposed estimator, we provide tools for reconstructing and isolating actuator and sensor attacks, and a control scheme capable of stabilizing the closed-loop dynamics by switching off isolated actuators. Simulation results are presented to illustrate the performance of our tools.
  • Item
    Thumbnail Image
    Information-theoretic privacy through chaos synchronization and optimal additive noise
    Murguia, C ; Shames, I ; Farokhi, F ; Nešić, D ; Farokhi, F (Springer, 2020)
    We study the problem of maximizing privacy of data sets by adding random vectors generated via synchronized chaotics oscillators. In particular, we consider the setup where information about data sets, queries, is sent through public (unsecured) communication channels to a remote station. To hide private features (specific entries) within the data set, we corrupt the response to queries by adding random vectors.We send the distorted query (the sum of the requested query and the random vector) through the public channel. The distribution of the additive random vector is designed to minimize the mutual information (our privacy metric) between private entries of the data set and the distorted query. We cast the synthesis of this distribution as a convex program in the probabilities of the additive random vector. Once we have the optimal distribution, we propose an algorithm to generate pseudorandom realizations from this distribution using trajectories of a chaotic oscillator. At the other end of the channel, we have a second chaotic oscillator, which we use to generate realizations from the same distribution. Note that if we obtain the same realizations on both sides of the channel, we can simply subtract the realization from the distorted query to recover the requested query. To generate equal realizations, we need the two chaotic oscillators to be synchronized, i.e., we need them to generate exactly the same trajectories on both sides of the channel synchronously in time. We force the two chaotic oscillators into exponential synchronization using a driving signal. Simulations are presented to illustrate our results.
  • Item
    Thumbnail Image
    A Robust Circle-criterion Observer-based Estimator for Discrete-time Nonlinear Systems in the Presence of Sensor Attacks
    Yang, T ; Murguia, C ; Kuijper, M ; Nesic, D (IEEE, 2018)
    We address the problem of robust state estimation and attack isolation for a class of discrete-time nonlinear systems with positive-slope nonlinearities under (potentially unbounded) sensor attacks and measurement noise. We consider the case when a subset of sensors is subject to additive false data injection attacks. Using a bank of circle-criterion observers, each observer leading to an Input-to-State Stable (ISS) estimation error, we propose a estimator that provides robust estimates of the system state in spite of sensor attacks and measurement noise; and an algorithm for detecting and isolating sensor attacks. Our results make use of the ISS property of the observers to check whether the trajectories of observers are consistent with the attack-free trajectories of the system. Simulations results are presented to illustrate the performance of the results.
  • Item
    Thumbnail Image
    A Multi-Observer Approach for Attack Detection and Isolation of Discrete-Time Nonlinear Systems
    Yang, T ; Murguia, C ; Kuijper, M ; Nesic, D (IEEE, 2018)
    We address the problem of attack detection and isolation for a class of discrete-time nonlinear systems under (potentially unbounded) sensor attacks and measurement noise. We consider the case when a subset of sensors is subject to additive false data injection attacks. Using a bank of observers, each observer leading to an Input-to-State Stable (ISS) estimation error, we propose two algorithms for detecting and isolating sensor attacks. These algorithms make use of the ISS property of the observers to check whether the trajectories of observers are "consistent" with the attack-free trajectories of the system. Simulations results are presented to illustrate the performance of the proposed algorithms.
  • Item
    Thumbnail Image
    Secure and Private Implementation of Dynamic Controllers Using Semihomomorphic Encryption
    Murguia, C ; Farokhi, F ; Shames, I (Institute of Electrical and Electronics Engineers (IEEE), 2020-09)
    This article presents a secure and private implementation of linear time-invariant dynamic controllers using Paillier's encryption, a semihomomorphic encryption method. To avoid overflow or underflow within the encryption domain, the state of the controller is reset periodically. A control design approach is presented to ensure stability and optimize performance of the closed-loop system with encrypted controller.
  • Item
    Thumbnail Image
    An unknown input multi-observer approach for estimation, attack isolation, and control of lti systems under actuator attacks
    Yang, T ; Murguia, C ; Kuijper, M ; Nesic, D (IEEE, 2019-06-01)
    We address the problem of state estimation, attack isolation, and control for discrete-time Linear Time Invariant (LTI) systems under (potentially unbounded) actuator false data injection attacks. Using a bank of Unknown Input Observers (UIOs), each observer leading to an exponentially stable estimation error in the attack-free case, we propose an estimator that provides exponential estimates of the system state and the attack signals when a sufficiently small number of actuators are attacked. We use these estimates to control the system and isolate actuator attacks. Simulations results are presented to illustrate the performance of the results.