Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    On Eigenvalues of Laplacian Matrix for a Class of Directed Signed Graphs
    Ahmadizadeh, S ; Shames, I ; Martin, S ; Nesic, D ( 2017-05-12)
    The eigenvalues of the Laplacian matrix for a class of directed graphs with both positive and negative weights are studied. First, a class of directed signed graphs is investigated in which one pair of nodes (either connected or not) is perturbed with negative weights. A necessary condition is proposed to attain the following objective for the perturbed graph: the real parts of the non-zero eigenvalues of its Laplacian matrix are positive. A sufficient condition is also presented that ensures the aforementioned objective for unperturbed graph. It is then highlighted the case where the condition becomes necessary and sufficient. Secondly, for directed graphs, a subset of pairs of nodes are identified where if any of the pairs is connected by an edge with infinitesimal negative weight, the resulting Laplacian matrix will have at least one eigenvalue with negative real part. Illustrative examples are presented to show the applicability of our results.
  • Item
    Thumbnail Image
    Security Metrics of Networked Control Systems under Sensor Attacks (extended preprint)
    Murguia, C ; Shames, I ; Ruths, J ; Nesic, D ( 2018-09-14)
    As more attention is paid to security in the context of control systems and as attacks occur to real control systems throughout the world, it has become clear that some of the most nefarious attacks are those that evade detection. The term stealthy has come to encompass a variety of techniques that attackers can employ to avoid being detected. In this manuscript, for a class of perturbed linear time-invariant systems, we propose two security metrics to quantify the potential impact that stealthy attacks could have on the system dynamics by tampering with sensor measurements. We provide analysis mathematical tools (in terms of linear matrix inequalities) to quantify these metrics for given system dynamics, control structure, system monitor, and set of sensors being attacked. Then, we provide synthesis tools (in terms of semidefinite programs) to redesign controllers and monitors such that the impact of stealthy attacks is minimized and the required attack-free system performance is guaranteed.
  • Item
    Thumbnail Image
    On Privacy of Quantized Sensor Measurements through Additive Noise
    Murguia, C ; Shames, I ; Farokhi, F ; Nesic, D ( 2018-09-10)
    We study the problem of maximizing privacy of quantized sensor measurements by adding random variables. In particular, we consider the setting where information about the state of a process is obtained using noisy sensor measurements. This information is quantized and sent to a remote station through an unsecured communication network. It is desired to keep the state of the process private; however, because the network is not secure, adversaries might have access to sensor information, which could be used to estimate the process state. To avoid an accurate state estimation, we add random numbers to the quantized sensor measurements and send the sum to the remote station instead. The distribution of these random variables is designed to minimize the mutual information between the sum and the quantized sensor measurements for a desired level of distortion -- how different the sum and the quantized sensor measurements are allowed to be. Simulations are presented to illustrate our results.
  • Item
    Thumbnail Image
    Gaussian Processes with Monotonicity Constraints for Preference Learning from Pairwise Comparisons
    Chin, R ; Manzie, C ; Ira, A ; Nesic, D ; Shames, I (IEEE, 2018)
    In preference learning, it is beneficial to incorporate monotonicity constraints for learning utility functions when there is prior knowledge of monotonicity. We present a novel method for learning utility functions with monotonicity constraints using Gaussian process regression. Data is provided in the form of pairwise comparisons between items. Using conditions on monotonicity for the predictive function, an algorithm is proposed which uses the weighted average between prior linear and maximum a posteriori (MAP) utility estimates. This algorithm is formally shown to guarantee monotonicity of the learned utility function in the dimensions desired. The algorithm is tested in a Monte Carlo simulation case study, in which the results suggest that the learned utility by the proposed algorithm performs better in prediction than the standalone linear estimate, and enforces monotonicity unlike the MAP estimate.
  • Item
    Thumbnail Image
    A machine learning approach for tuning model predictive controllers
    Ira, AS ; Shames, I ; Manzie, C ; Chin, R ; Nesic, D ; Nakada, H ; Sano, T (IEEE, 2018-01-01)
    Many industrial domains are characterized by Multiple-Input-Multiple-Output (MIMO) systems for which an explicit relationship capturing the nontrivial trade-off between the competing objectives is not available. Human experts have the ability to implicitly learn such a relationship, which in turn enables them to tune the corresponding controller to achieve the desirable closed-loop performance. However, as the complexity of the MIMO system and/or the controller increase, so does the tuning time and the associated tuning cost. To reduce the tuning cost, a framework is proposed in which a machine learning method for approximating the human-learned cost function along with an optimization algorithm for optimizing it, and consequently tuning the controller, are employed. In this work the focus is on the tuning of Model Predictive Controllers (MPCs), given both the interest in their implementations across many industrial domains and the associated high degrees of freedom present in the corresponding tuning process. To demonstrate the proposed approach, simulation results for the tuning of an air path MPC controller in a diesel engine are presented.
  • Item
    Thumbnail Image
    Corrigendum to "On eigenvalues of Laplacian matrix for a class of directed signed graphs" (vol 523, pg 281, 2017)
    Ahmadizadeh, S ; Shames, I ; Martin, S ; Nesic, D (Elsevier, 2017-10-01)
    This note corrects an error in the results of Subsection 3.1 in authors' paper “On Eigenvalues of Laplacian Matrix for a Class of Directed Signed Graphs”, which appeared in Linear Algebra and its Applications 523 (2017), 281–306.
  • Item
    Thumbnail Image
    On eigenvalues of Laplacian matrix for a class of directed signed graphs
    Ahmadizadeh, S ; Shames, I ; Martin, S ; Nesic, D (ELSEVIER SCIENCE INC, 2017-06-15)
    The eigenvalues of the Laplacian matrix for a class of directed graphs with both positive and negative weights are studied. The Laplacian matrix naturally arises in a wide range of applications involving networks. First, a class of directed signed graphs is studied in which one pair of nodes (either connected or not) is perturbed with negative weights. A necessary and sufficient condition is proposed to attain the following objective for the perturbed graph: the real parts of the non-zero eigenvalues of its Laplacian matrix are positive. Under certain assumption on the unperturbed graph, it is established that the objective is achieved if and only if the magnitudes of the added negative weights are smaller than an easily computable upper bound. This upper bound is shown to depend on the topology of the unperturbed graph. It is also pointed out that the obtained condition can be applied in a recursive manner to deal with multiple edges with negative weights. Secondly, for directed graphs, a subset of pairs of nodes are identified where if any of the pairs is connected by an edge with infinitesimal negative weight, the resulting Laplacian matrix will have at least one eigenvalue with negative real part. Illustrative examples are presented to show the applicability of our results.
  • Item
    Thumbnail Image
    On Privacy of Quantized Sensor Measurements through Additive Noise
    Murguia, C ; Shames, I ; Farokhi, F ; Nesic, D (IEEE, 2018-01-01)
    We study the problem of maximizing privacy of quantized sensor measurements by adding random variables. In particular, we consider the setting where information about the state of a process is obtained using noisy sensor measurements. This information is quantized and sent to a remote station through an unsecured communication network. It is desired to keep the state of the process private; however, because the network is not secure, adversaries might have access to sensor information, which could be used to estimate the process state. To avoid an accurate state estimation, we add random numbers to the quantized sensor measurements and send the sum to the remote station instead. The distribution of these random variables is designed to minimize the mutual information between the sum and the quantized sensor measurements for a desired level of distortion - how different the sum and the quantized sensor measurements are allowed to be. Simulations are presented to illustrate our results.
  • Item
    Thumbnail Image
    Ensuring communication connectivity in multi-agent systems in the presence of uncooperative clients
    Ju, Z ; Shames, I ; Nešić, D (IEEE, 2016)
    In this work, the problem of maintaining and guaranteeing communication connectivity between a pair of “client” agents via controlling a number of “router” agents is considered. It is assumed that agents satisfy quadrotor dynamics. A set of controllers are proposed and it is shown that these controllers solve the problem exponentially fast under a set of mild assumptions. The simulation results illustrate the effectiveness of the proposed controllers.
  • Item
    Thumbnail Image
    Secure Control of Nonlinear Systems Using Semi-Homomorphic Encryption
    Lin, Y ; Farokhi, F ; Shames, I ; Nesic, D (IEEE, 2018-01-01)
    A secure nonlinear networked control system (NCS) design using semi-homomorphic encryption, namely, Paillier encryption is studied. Under certain assumptions, control signal computation using encrypted signal directly is allowed by semi-homomorphic encryption. Thus, the security of the NCSs is further enhanced by concealing information on the controller side. However, additional technical difficulties in the design and analysis of NCSs are induced compared to standard NCSs. In this paper, the stabilization of a nonlinear discrete time NCS is considered. More specifically, sufficient conditions on the encryption parameters that guarantee stability of the NCS are provided, and a trade-off between the encryption parameters and the ultimate bound of the state is shown.