Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    A Pilot Study on the use of Accelerometer Sensors for Monitoring Post Acute Stroke Patients
    Gubbi, J ; Kumar, D ; Rao, AS ; Yan, B ; Palaniswami, M (IEEE, 2013)
    The high incidence of stroke has raised a major concern among health professionals in recent years. Concerted efforts from medical and engineering communities are being exercised to tackle the problem at its early stage. In this direction, a pilot study to analyze and detect the affected arm of the stroke patient based on hand movements is presented. The premise is that the correlation of magnitude of the activities of the two arms vary significantly for stroke patients from controls. Further, the cross-correlation of right and left arms for three axes are differentiable for patients and controls. A total of 22 subjects (15 patients and 7 controls) were included in this study. An overall accuracy of 95.45% was obtained with sensitivity of 1 and specificity of 0.86 using correlation based method.
  • Item
    Thumbnail Image
    Classification of Convulsive Psychogenic Non-epileptic Seizures Using Histogram of Oriented Motion of Accelerometry Signals
    Kusmakar, S ; Gubbi, J ; Rao, AS ; Yan, B ; O'Brien, TJ ; PALANISWAMI, M (IEEE, 2015)
    A seizure is caused due to sudden surge of electrical activity within the brain. There is another class of seizures called psychogenic non-epileptic seizure (PNES) that mimics epilepsy, but is caused due to underlying psychology. The diagnosis of PNES is done using video-electroencephalography monitoring (VEM), which is a resource intensive process. Recently, accelerometers have been shown to be effective in classification of epileptic and non-epileptic seizures. In this work, we propose a novel feature called histogram of oriented motion (HOOM) extracted from accelerometer signals for classification of convulsive PNES. An automated algorithm based on HOOM is proposed. The algorithm showed a high sensitivity of (93.33%) and an overall accuracy of (80%) in classifying convulsive PNES.
  • Item
    Thumbnail Image
    Automatic Detection and Classification of Convulsive Psychogenic Nonepileptic Seizures Using a Wearable Device
    Gubbi, J ; Kusmakar, S ; Rao, AS ; Yan, B ; O'Brien, T ; Palaniswami, M (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016-07)
    Epilepsy is one of the most common neurological disorders and patients suffer from unprovoked seizures. In contrast, psychogenic nonepileptic seizures (PNES) are another class of seizures that are involuntary events not caused by abnormal electrical discharges but are a manifestation of psychological distress. The similarity of these two types of seizures poses diagnostic challenges that often leads in delayed diagnosis of PNES. Further, the diagnosis of PNES involves high-cost hospital admission and monitoring using video-electroencephalogram machines. A wearable device that can monitor the patient in natural setting is a desired solution for diagnosis of convulsive PNES. A wearable device with an accelerometer sensor is proposed as a new solution in the detection and diagnosis of PNES. The seizure detection algorithm and PNES classification algorithm are developed. The developed algorithms are tested on data collected from convulsive epileptic patients. A very high seizure detection rate is achieved with 100% sensitivity and few false alarms. A leave-one-out error of 6.67% is achieved in PNES classification, demonstrating the usefulness of wearable device in the diagnosis of PNES.
  • Item
    Thumbnail Image
    Automated Scoring of Hemiparesis in Acute Stroke From Measures of Upper Limb Co-Ordination Using Wearable Accelerometry.
    Datta, S ; Karmakar, CK ; Rao, AS ; Yan, B ; Palaniswami, M (Institute of Electrical and Electronics Engineers, 2020-04)
    Stroke survivors usually experience paralysis in one half of the body, i.e., hemiparesis, and the upper limbs are severely affected. Continuous monitoring of hemiparesis progression hours after the stroke attack involves manual observation of upper limb movements by medical experts in the hospital. Hence it is resource and time intensive, in addition to being prone to human errors and inter-rater variability. Wearable devices have found significance in automated continuous monitoring of neurological disorders like stroke. In this paper, we use accelerometer signals acquired using wrist-worn devices to analyze upper limb movements and identify hemiparesis in acute stroke patients, while they perform a set of proposed spontaneous and instructed movements. We propose novel measures of time (and frequency) domain coherence between accelerometer data from two arms at different lags (and frequency bands). These measures correlate well with the clinical gold standard of measurement of hemiparetic severity in stroke, the National Institutes of Health Stroke Scale (NIHSS). The study, undertaken on 32 acute stroke patients with varying levels of hemiparesis and 15 healthy controls, validates the use of short length (< 10 minutes) accelerometry data to identify hemiparesis through leave-one-subject-out cross-validation based hierarchical discriminant analysis. The results indicate that the proposed approach can distinguish between controls, moderate and severe hemiparesis with an average accuracy of 91%.
  • Item
    Thumbnail Image
    Upper limb movement profiles during spontaneous motion in acute stroke
    Datta, S ; Karmakar, CK ; Rao, AS ; Yan, B ; Palaniswami, M (IOP Publishing, 2021-05-11)
    Objective: The clinical assessment of upper limb hemiparesis in acute stroke involves repeated manual examination of hand movements during instructed tasks. This process is labour-intensive and prone to human error as well as being strenuous for the patient. Wearable motion sensors can automate the process by measuring characteristics of hand activity. Existing work in this direction either uses multiple sensors or complex instructed movements, or analyzes only the quantity of upper limb motion. These methods are obtrusive and strenuous for acute stroke patients and are also sensitive to noise. In this work, we propose to use only two wrist-worn accelerometer sensors to study the quality of completely spontaneous upper limb motion and investigate correlation with clinical scores for acute stroke care. Approach: The velocity time series estimated from acquired acceleration data during spontaneous motion is decomposed into smaller movement elements. Measures of density, duration and smoothness of these component elements are extracted and their disparity is studied across the two hands. Main results: Spontaneous upper limb motion in acute stroke can be decomposed into movement elements that resemble point-to-point reaching tasks. These elements are smoother and sparser in the normal hand than in the hemiparetic hand, and the amount of smoothness correlates with hemiparetic severity. Features characterizing the disparity of these movement elements between the two hands show statistical significance in differentiating mild-to-moderate and severe hemiparesis. Using data from 67 acute stroke patients, the proposed method can classify the two levels of hemiparetic severity with 85% accuracy. Additionally, compared to activity-based features, the proposed method is robust to the presence of noise in acquired data. Significance: This work demonstrates that the quality of upper limb motion can characterize and identify hemiparesis in stroke survivors. This is clinically significant towards the continuous automated assessment of hemiparesis in acute stroke using minimally intrusive wearable sensors.