Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    Thumbnail Image
    An efficient deep neural model for detecting crowd anomalies in videos
    Yang, M ; Tian, S ; Rao, AS ; Rajasegarar, S ; Palaniswami, M ; Zhou, Z (Springer, 2023-06-01)
    Identifying unusual crowd events is highly challenging, laborious, and prone to errors in video surveillance applications. We propose a novel end-to-end deep learning architecture called Stacked Denoising Auto-Encoder (DeepSDAE) to address these challenges, comprising SDAE, VGG16 and Plane-based one-class Support Vector Machine (SVM), abbreviated as PSVM, to detect anomalies such as stationary people in an active scene or loitering activities in a crowded scene. The DeepSDAE framework is a hybrid deep learning architecture. It consists of a four-layered SDAE and an enhanced convolutional neural network (CNN) model. Our framework employs Reinforcement Learning to optimise the learning parameters to detect crowd anomalies. We use the Markov Decision Process (MDP) with Deep Q-learning to find the optimal Q value. We also present a late fusion procedure to combine individual decisions from the intermediate and final layers of the SDAE and VGG16 networks to detect different anomalies. Our experiments on four real-world datasets reveal the superior performance of our proposed framework in detecting (frame-level and pixel-level) anomalies.
  • Item
    Thumbnail Image
    Network Resource Allocation for Industry 4.0 with Delay and Safety Constraints
    Sardar, AA ; Rao, AS ; Alpcan, T ; Das, G ; Palaniswami, M (Institute of Electrical and Electronics Engineers, 2023)
    In this paper, we model a futuristic factory floor equipped with Automated Guided Vehicles (AGVs), cameras, and a Virtual Reality (VR) surveillance system; and connected to a 5G network for communication purposes. Motion planning of AGVs and VR applications is offloaded to an edge server for computational flexibility and reduced hardware on the factory floor. Decisions on the edge server are made using the video feed provided by the cameras in a controlled manner. Our objectives are to ensure factory floor safety and provide smooth VR experience in the surveillance room. Providing proper and timely allocation of network resources is of utmost importance to maintain the end-to-end delay necessary to achieve these objectives. We provide a statistical analysis to estimate the bandwidth required by a factory to satisfy the delay requirements 99.999 percent of the time. We formulate a nonconvex integer nonlinear problem aiming to minimize the safety and delay violations. To solve it, we propose a real-time network resource allocation algorithm that has linear time complexity in terms of the number of components connected to the wireless network. Our algorithm significantly outperforms existing solvers (genetic algorithm, surrogate optimizer) and meets the objectives using less bandwidth compared to existing methods.
  • Item
    Thumbnail Image
    Achieving QoS for Real-Time Bursty Applications over Passive Optical Networks
    Roy, D ; Rao, AS ; Alpcan, T ; Das, G ; Palaniswami, M ( 2021-09-05)
    Emerging real-time applications such as those classified under ultra-reliable low latency (uRLLC) generate bursty traffic and have strict Quality of Service (QoS) requirements. Passive Optical Network (PON) is a popular access network technology, which is envisioned to handle such applications at the access segment of the network. However, the existing standards cannot handle strict QoS constraints. The available solutions rely on instantaneous heuristic decisions and maintain QoS constraints (mostly bandwidth) in an average sense. Existing works with optimal strategies are computationally complex and are not suitable for uRLLC applications. This paper presents a novel computationally-efficient, far-sighted bandwidth allocation policy design for facilitating bursty traffic in a PON framework while satisfying strict QoS (age of information/delay and bandwidth) requirements of modern applications. To this purpose, first we design a delay-tracking mechanism which allows us to model the resource allocation problem from a control-theoretic viewpoint as a Model Predictive Control (MPC). MPC helps in taking far-sighted decisions regarding resource allocations and captures the time-varying dynamics of the network. We provide computationally efficient polynomial-time solutions and show its implementation in the PON framework. Compared to existing approaches, MPC reduces delay violations by approximately 15% for a delay-constrained application of 1ms target. Our approach is also robust to varying traffic arrivals.
  • Item
    Thumbnail Image
    Achieving AI-enabled Robust End-to-End Quality of Experience over Radio Access Networks
    Roy, D ; Rao, AS ; Alpcan, T ; Das, G ; Palaniswami, M ( 2022-01-13)
    Emerging applications such as Augmented Reality, the Internet of Vehicles and Remote Surgery require both computing and networking functions working in harmony. The End-to-end (E2E) quality of experience (QoE) for these applications depends on the synchronous allocation of networking and computing resources. However, the relationship between the resources and the E2E QoE outcomes is typically stochastic and non-linear. In order to make efficient resource allocation decisions, it is essential to model these relationships. This article presents a novel machine-learning based approach to learn these relationships and concurrently orchestrate both resources for this purpose. The machine learning models further help make robust allocation decisions regarding stochastic variations and simplify robust optimization to a conventional constrained optimization. When resources are insufficient to accommodate all application requirements, our framework supports executing some of the applications with minimal degradation (graceful degradation) of E2E QoE. We also show how we can implement the learning and optimization methods in a distributed fashion by the Software-Defined Network (SDN) and Kubernetes technologies. Our results show that deep learning-based modelling achieves E2E QoE with approximately 99.8\% accuracy, and our robust joint-optimization technique allocates resources efficiently when compared to existing differential services alternatives.
  • Item
    Thumbnail Image
    Online Slice Reconfiguration for End-to-End QoE in 6G Applications
    Roy, D ; Rao, AS ; Alpcan, T ; Wick, A ; Das, G ; Palaniswami, M ( 2022-01-13)
  • Item
    Thumbnail Image
    Real-time monitoring of construction sites: Sensors, methods, and applications
    Rao, AS ; Radanovic, M ; Liu, Y ; Hu, S ; Fang, Y ; Khoshelham, K ; Palaniswami, M ; Tuan, N (ELSEVIER, 2022-04)
    The construction industry is one of the world's largest industries, with an annual budget of $10 trillion globally. Despite its size, the efficiency and growth in labour productivity in the construction industry have been relatively low compared to other sectors, such as manufacturing and agriculture. To this extent, many studies have recognised the role of automation in improving the efficiency and safety of construction projects. In particular, automated monitoring of construction sites is a significant research challenge. This paper provides a comprehensive review of recent research on the real-time monitoring of construction projects. The review focuses on sensor technologies and methodologies for real-time mapping, scene understanding, positioning, and tracking of construction activities in indoor and outdoor environments. The review also covers various case studies of applying these technologies and methodologies for real-time hazard identification, monitoring workers’ behaviour, workers’ health, and monitoring static and dynamic construction environments.
  • Item
    Thumbnail Image
    Achieving AI-Enabled Robust End-to-End Quality of Experience Over Backhaul Radio Access Networks
    Roy, D ; Rao, AS ; Alpcan, T ; Das, G ; Palaniswami, M (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2022-09)
    Emerging applications such as Augmented Reality, the Internet of Vehicles and Remote Surgery require both computing and networking functions working in harmony. The End-to-end (E2E) quality of experience (QoE) for these applications depends on the synchronous allocation of networking and computing resources. However, the relationship between the resources and the E2E QoE outcomes is typically stochastic and non-linear. In order to make efficient resource allocation decisions, it is essential to model these relationships. This article presents a novel machine-learning based approach to learn these relationships and concurrently orchestrate both resources for this purpose. The machine learning models further help make robust allocation decisions regarding stochastic variations and simplify robust optimization to a conventional constrained optimization. When resources are insufficient to accommodate all application requirements, our framework supports executing some of the applications with minimal degradation (graceful degradation) of E2E QoE. We also show how we can implement the learning and optimization methods in a distributed fashion by the Software-Defined Network (SDN) and Kubernetes technologies. Our results show that deep learning-based modelling achieves E2E QoE with approximately 99.8% accuracy, and our robust joint-optimization technique allocates resources efficiently when compared to existing differential services alternatives.
  • Item
    Thumbnail Image
    Achieving QoS for bursty uRLLC applications over passive optical networks
    Roy, D ; Rao, AS ; Alpcan, T ; Das, G ; Palaniswami, M (Optica Publishing Group, 2022-05)
    Emerging real-time applications such as those classified under ultra-reliable low latency (uRLLC) generate bursty traffic and have strict quality of service (QoS) requirements. The passive optical network (PON) is a popular access network technology, which is envisioned to handle such applications at the access segment of the network. However, the existing standards cannot handle strict QoS constraints for such applications. The available solutions rely on instantaneous heuristic decisions and maintain QoS constraints (mostly bandwidth) in an average sense. Existing proposals in generic networks with optimal strategies are computationally complex and are, therefore, not suitable for uRLLC applications. This paper presents a novel computationally efficient, far-sighted bandwidth allocation policy design for facilitating bursty uRLLC traffic in a PON framework while satisfying strict QoS (age of information/delay and bandwidth) requirements. To this purpose, first we design a delay-tracking mechanism, which allows us to model the resource allocation problem from a control-theoretic viewpoint as a model predictive control (MPC) problem. MPC helps in making far-sighted decisions regarding resource allocations and captures the time-varying dynamics of the network. We provide computationally efficient polynomial time solutions and show their implementation in the PON framework. Compared to existing approaches, MPC can improve delay violations by 15% and 45% at loads of 0.8 and 0.9, respectively, for delay-constrained applications of 1 ms and 4 ms. Our approach is also robust to varying traffic arrivals.
  • Item
    Thumbnail Image
    The Role of Visual Assessment of Clusters for Big Data Analysis: From Real-World Internet of Things
    Palaniswami, M ; Rao, AS ; Kumar, D ; Rathore, P ; Rajasegarar, S (Institute of Electrical and Electronics Engineers (IEEE), 2020-10)
    The Internet of Things (IoT) is playing a vital role in shaping today?s technological world, including our daily lives. By 2025, the number of connected devices due to the IoT is estimated to surpass a whopping 75 billion. It is a challenging task to discover, integrate, and interpret processed big data from such ubiquitously available heterogeneous and actively natural resources and devices. Cluster analysis of IoT-generated big data is essential for the meaningful interpretation of such complex data. However, we often have very limited knowledge of the number of clusters actually present in the given data. The problem of finding whether clusters are present even before applying clustering algorithms is termed the assessment of clustering tendency. In this article, we present a set of useful visual assessment of cluster tendency (VAT) tools and techniques developed with major contributions from James C. Bezdek. The article further highlights how these techniques are advancing the IoT through large-scale IoT implementations.
  • Item
    Thumbnail Image
    Measures of Bipedal Toe-Ground Clearance Asymmetry to Characterize Gait in Stroke Survivors.
    Datta, S ; Begg, R ; Rao, AS ; Karmakar, C ; Bajelan, S ; Said, C ; Palaniswami, M (IEEE, 2021-11)
    Post-stroke hemiparesis often impairs gait and increases the risks of falls. Low and variable Minimum Toe Clearance (MTC) from the ground during the swing phase of the gait cycle has been identified as a major cause of such falls. In this paper, we study MTC characteristics in 30 chronic stroke patients, extracted from gait patterns during treadmill walking, using infrared sensors and motion analysis camera units. We propose objective measures to quantify MTC asymmetry between the paretic and non-paretic limbs using Poincaré analysis. We show that these subject independent Gait Asymmetry Indices (GAIs) represent temporal variations of relative MTC differences between the two limbs and can distinguish between healthy and stroke participants. Compared to traditional measures of cross-correlation between the MTC of the two limbs, these measures are better suited to automate gait monitoring during stroke rehabilitation. Further, we explore possible clusters within the stroke data by analysing temporal dispersion of MTC features, which reveals that the proposed GAIs can also be potentially used to quantify the severity of lower limb hemiparesis in chronic stroke.