Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Automatic Detection and Classification of Convulsive Psychogenic Nonepileptic Seizures Using a Wearable Device
    Gubbi, J ; Kusmakar, S ; Rao, AS ; Yan, B ; O'Brien, T ; Palaniswami, M (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016-07)
    Epilepsy is one of the most common neurological disorders and patients suffer from unprovoked seizures. In contrast, psychogenic nonepileptic seizures (PNES) are another class of seizures that are involuntary events not caused by abnormal electrical discharges but are a manifestation of psychological distress. The similarity of these two types of seizures poses diagnostic challenges that often leads in delayed diagnosis of PNES. Further, the diagnosis of PNES involves high-cost hospital admission and monitoring using video-electroencephalogram machines. A wearable device that can monitor the patient in natural setting is a desired solution for diagnosis of convulsive PNES. A wearable device with an accelerometer sensor is proposed as a new solution in the detection and diagnosis of PNES. The seizure detection algorithm and PNES classification algorithm are developed. The developed algorithms are tested on data collected from convulsive epileptic patients. A very high seizure detection rate is achieved with 100% sensitivity and few false alarms. A leave-one-out error of 6.67% is achieved in PNES classification, demonstrating the usefulness of wearable device in the diagnosis of PNES.
  • Item
    Thumbnail Image
    Novel features for capturing temporal variations of rhythmic limb movement to distinguish convulsive epileptic and psychogenic nonepileptic seizures
    Kusmakar, S ; Karmakar, C ; Yan, B ; Muthuganapathy, R ; Kwan, P ; O'Brien, TJ ; Palaniswami, MS (WILEY, 2019-01)
    OBJECTIVE: To investigate the characteristics of motor manifestation during convulsive epileptic and psychogenic nonepileptic seizures (PNES), captured using a wrist-worn accelerometer (ACM) device. The main goal was to find quantitative ACM features that can differentiate between convulsive epileptic and convulsive PNES. METHODS: In this study, motor data were recorded using wrist-worn ACM-based devices. A total of 83 clinical events were recorded: 39 generalized tonic-clonic seizures (GTCS) from 12 patients with epilepsy, and 44 convulsive PNES from 7 patients (one patient had both GTCS and PNES). The temporal variations in the ACM traces corresponding to 39 GTCS and 44 convulsive PNES events were extracted using Poincaré maps. Two new indices-tonic index (TI) and dispersion decay index (DDI)-were used to quantify the Poincaré-derived temporal variations for every GTCS and convulsive PNES event. RESULTS: The TI and DDI of Poincaré-derived temporal variations for GTCS events were higher in comparison to convulsive PNES events (P < 0.001). The onset and the subsiding patterns captured by TI and DDI differentiated between epileptic and convulsive nonepileptic seizures. An automated classifier built using TI and DDI of Poincaré-derived temporal variations could correctly differentiate 42 (sensitivity: 95.45%) of 44 convulsive PNES events and 37 (specificity: 94.87%) of 39 GTCS events. A blinded review of the Poincaré-derived temporal variations in GTCS and convulsive PNES by epileptologists differentiated 26 (sensitivity: 70.27%) of 44 PNES events and 33 (specificity: 86.84%) of 39 GTCS events correctly. SIGNIFICANCE: In addition to quantifying the motor manifestation mechanism of GTCS and convulsive PNES, the proposed approach also has diagnostic significance. The new ACM features incorporate clinical characteristics of GTCS and PNES, thus providing an accurate, low-cost, and practical alternative to differential diagnosis of PNES.