Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Security Metrics of Networked Control Systems under Sensor Attacks (extended preprint)
    Murguia, C ; Shames, I ; Ruths, J ; Nesic, D ( 2018-09-14)
    As more attention is paid to security in the context of control systems and as attacks occur to real control systems throughout the world, it has become clear that some of the most nefarious attacks are those that evade detection. The term stealthy has come to encompass a variety of techniques that attackers can employ to avoid being detected. In this manuscript, for a class of perturbed linear time-invariant systems, we propose two security metrics to quantify the potential impact that stealthy attacks could have on the system dynamics by tampering with sensor measurements. We provide analysis mathematical tools (in terms of linear matrix inequalities) to quantify these metrics for given system dynamics, control structure, system monitor, and set of sensors being attacked. Then, we provide synthesis tools (in terms of semidefinite programs) to redesign controllers and monitors such that the impact of stealthy attacks is minimized and the required attack-free system performance is guaranteed.
  • Item
    Thumbnail Image
    On Privacy of Quantized Sensor Measurements through Additive Noise
    Murguia, C ; Shames, I ; Farokhi, F ; Nesic, D ( 2018-09-10)
    We study the problem of maximizing privacy of quantized sensor measurements by adding random variables. In particular, we consider the setting where information about the state of a process is obtained using noisy sensor measurements. This information is quantized and sent to a remote station through an unsecured communication network. It is desired to keep the state of the process private; however, because the network is not secure, adversaries might have access to sensor information, which could be used to estimate the process state. To avoid an accurate state estimation, we add random numbers to the quantized sensor measurements and send the sum to the remote station instead. The distribution of these random variables is designed to minimize the mutual information between the sum and the quantized sensor measurements for a desired level of distortion -- how different the sum and the quantized sensor measurements are allowed to be. Simulations are presented to illustrate our results.