Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    No Preview Available
    Indoor infrared optical wireless localization system with background light power estimation capability
    Wang, K ; Nirmalathas, A ; Lim, C ; Alameh, K ; Li, H ; Skafidas, E (Optica Publishing Group, 2017-09-18)
    The indoor user localization function is in high demand for high-speed wireless communications, navigations and smart-home applications. The optical wireless technology has been used to localize end users in indoor environments. However, its accuracy is typically very limited, due to the ambient light, which is relatively strong. In this paper, a novel high-localization-accuracy optical wireless based indoor localization system, based on the use of the mechanism that estimates background light intensity, is proposed. Both theoretical studies and demonstration experiments are carried out. Experimental results show that the accuracy of the proposed optical wireless indoor localization system is independent on the localization light strength, and that an average localization error as small as 2.5 cm is attained, which is 80% better than the accuracy of previously reported optical wireless indoor localization systems.
  • Item
    Thumbnail Image
    A Label-Free, Quantitative Fecal Hemoglobin Detection Platform for Colorectal Cancer Screening
    Soraya, GV ; Nguyen, TC ; Abeyrathne, CD ; Huynh, DH ; Chan, J ; Nguyen, PD ; Nasr, B ; Chana, G ; Kwan, P ; Skafidas, E (MDPI, 2017-06)
    The early detection of colorectal cancer is vital for disease management and patient survival. Fecal hemoglobin detection is a widely-adopted method for screening and early diagnosis. Fecal Immunochemical Test (FIT) is favored over the older generation chemical based Fecal Occult Blood Test (FOBT) as it does not require dietary or drug restrictions, and is specific to human blood from the lower digestive tract. To date, no quantitative FIT platforms are available for use in the point-of-care setting. Here, we report proof of principle data of a novel low cost quantitative fecal immunochemical-based biosensor platform that may be further developed into a point-of-care test in low-resource settings. The label-free prototype has a lower limit of detection (LOD) of 10 µg hemoglobin per gram (Hb/g) of feces, comparable to that of conventional laboratory based quantitative FIT diagnostic systems.
  • Item
    Thumbnail Image
    Pathway-wide association study identifies five shared pathways associated with schizophrenia in three ancestral distinct populations
    Liu, C ; Bousman, CA ; Pantelis, C ; Skafidas, E ; Zhang, D ; Yue, W ; Everall, IP (SPRINGERNATURE, 2017-02-21)
    Genome-wide association studies have confirmed the polygenic nature of schizophrenia and suggest that there are hundreds or thousands of alleles associated with increased liability for the disorder. However, the generalizability of any one allelic marker of liability is remarkably low and has bred the notion that schizophrenia may be better conceptualized as a pathway(s) disorder. Here, we empirically tested this notion by conducting a pathway-wide association study (PWAS) encompassing 255 experimentally validated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways among 5033 individuals diagnosed with schizophrenia and 5332 unrelated healthy controls across three distinct ethnic populations; European-American (EA), African-American (AA) and Han Chinese (CH). We identified 103, 74 and 87 pathways associated with schizophrenia liability in the EA, CH and AA populations, respectively. About half of these pathways were uniquely associated with schizophrenia liability in each of the three populations. Five pathways (serotonergic synapse, ubiquitin mediated proteolysis, hedgehog signaling, adipocytokine signaling and renin secretion) were shared across all three populations and the single-nucleotide polymorphism sets representing these five pathways were enriched for single-nucleotide polymorphisms with regulatory function. Our findings provide empirical support for schizophrenia as a pathway disorder and suggest schizophrenia is not only a polygenic but likely also a poly-pathway disorder characterized by both genetic and pathway heterogeneity.
  • Item
    Thumbnail Image
    A Silk Fibroin Bio-Transient Solution Processable Memristor
    Yong, J ; Hassan, B ; Liang, Y ; Ganesan, K ; Rajasekharan, R ; Evans, R ; Egan, G ; Kavehei, O ; Li, J ; Chana, G ; Nasr, B ; Skafidas, E (NATURE PORTFOLIO, 2017-11-07)
    Today's electronic devices are fabricated using highly toxic materials and processes which limits their applications in environmental sensing applications and mandates complex encapsulation methods in biological and medical applications. This paper proposes a fully resorbable high density bio-compatible and environmentally friendly solution processable memristive crossbar arrays using silk fibroin protein which demonstrated bipolar resistive switching ratio of 104 and possesses programmable device lifetime characteristics before the device gracefully bio-degrades, minimizing impact to environment or to the implanted host. Lactate dehydrogenase assays revealed no cytotoxicity on direct exposure to the fabricated device and support their environmentally friendly and biocompatible claims. Moreover, the correlation between the oxidation state of the cations and their tendency in forming conductive filaments with respect to different active electrode materials has been investigated. The experimental results and the numerical model based on electro-thermal effect shows a tight correspondence in predicting the memristive switching process with various combinations of electrodes which provides insight into the morphological changes of conductive filaments in the silk fibroin films.
  • Item
    Thumbnail Image
    WDR62 Regulates Early Neural and Glial Progenitor Specification of Human Pluripotent Stem Cells
    Alshawaf, AJ ; Antonic, A ; Skafidas, E ; Ng, DC-H ; Dottori, M (HINDAWI LTD, 2017)
    Mutations in WD40-repeat protein 62 (WDR62) are commonly associated with primary microcephaly and other developmental cortical malformations. We used human pluripotent stem cells (hPSC) to examine WDR62 function during human neural differentiation and model early stages of human corticogenesis. Neurospheres lacking WDR62 expression showed decreased expression of intermediate progenitor marker, TBR2, and also glial marker, S100β. In contrast, inhibition of c-Jun N-terminal kinase (JNK) signalling during hPSC neural differentiation induced upregulation of WDR62 with a corresponding increase in neural and glial progenitor markers, PAX6 and EAAT1, respectively. These findings may signify a role of WDR62 in specifying intermediate neural and glial progenitors during human pluripotent stem cell differentiation.
  • Item
    Thumbnail Image
    Graphene foam as a biocompatible scaffold for culturing human neurons
    D'Abaco, GM ; Mattei, C ; Nasr, BK ; Hudson, EJ ; Alshawaf, AJ ; Chana, G ; Everall, IP ; Nayagam, B ; Dottori, M ; Skafidas, E (ROYAL SOC, 2018-03)
    In this study, we explore the use of electrically active graphene foam as a scaffold for the culture of human-derived neurons. Human embryonic stem cell (hESC)-derived cortical neurons fated as either glutamatergic or GABAergic neuronal phenotypes were cultured on graphene foam. We show that graphene foam is biocompatible for the culture of human neurons, capable of supporting cell viability and differentiation of hESC-derived cortical neurons. Based on the findings, we propose that graphene foam represents a suitable scaffold for engineering neuronal tissue and warrants further investigation as a model for understanding neuronal maturation, function and circuit formation.
  • Item
    Thumbnail Image
    Self-Organized Nanostructure Modified Microelectrode for Sensitive Electrochemical Glutamate Detection in Stem Cells-Derived Brain Organoids
    Nasr, B ; Chatterton, R ; Yong, JHM ; Jamshidi, P ; D'Abaco, GM ; Bjorksten, AR ; Kavehei, O ; Chana, G ; Dottori, M ; Skafidas, E (MDPI, 2018-03)
    Neurons release neurotransmitters such as glutamate to communicate with each other and to coordinate brain functioning. As increased glutamate release is indicative of neuronal maturation and activity, a system that can measure glutamate levels over time within the same tissue and/or culture system is highly advantageous for neurodevelopmental investigation. To address such challenges, we develop for the first time a convenient method to realize functionalized borosilicate glass capillaries with nanostructured texture as an electrochemical biosensor to detect glutamate release from cerebral organoids generated from human embryonic stem cells (hESC) that mimic various brain regions. The biosensor shows a clear catalytic activity toward the oxidation of glutamate with a sensitivity of 93 ± 9.5 nA·µM-1·cm-2. It was found that the enzyme-modified microelectrodes can detect glutamate in a wide linear range from 5 µM to 0.5 mM with a limit of detection (LOD) down to 5.6 ± 0.2 µM. Measurements were performed within the organoids at different time points and consistent results were obtained. This data demonstrates the reliability of the biosensor as well as its usefulness in measuring glutamate levels across time within the same culture system.
  • Item
    Thumbnail Image
    A compact silicon grating coupler based on hollow tapered spot-size converter
    Asaduzzaman, M ; Bakaul, M ; Skafidas, E ; Khandokar, MRH (NATURE PORTFOLIO, 2018-02-07)
    A new compact silicon grating coupler enabling fibre-to-chip light coupling at a minimized taper length is proposed. The proposed coupler, which incorporates a hollow tapered waveguide, converts the spot-size of optical modes from micro- to nano-scales by reducing the lateral dimension from 15 µm to 300 nm at a length equals to 60 µm. The incorporation of such a coupler in photonic integrated circuit causes a physical footprint as small as 81 µm × 15 µm with coupling efficiency and 3-dB coupling bandwidth as high as 72% and 69 nm respectively.
  • Item
    Thumbnail Image
    No preliminary evidence of differences in astrocyte density within the white matter of the dorsolateral prefrontal cortex in autism
    Lee, TT ; Skafidas, E ; Dottori, M ; Zantomio, D ; Pantelis, C ; Everall, I ; Chana, G (BMC, 2017-12-08)
    BACKGROUND: While evidence for white matter and astrocytic abnormalities exist in autism, a detailed investigation of astrocytes has not been conducted. Such an investigation is further warranted by an increasing role for neuroinflammation in autism pathogenesis, with astrocytes being key players in this process. We present the first study of astrocyte density and morphology within the white matter of the dorsolateral prefrontal cortex (DLPFC) in individuals with autism. METHODS: DLPFC formalin-fixed sections containing white matter from individuals with autism (n = 8, age = 4-51 years) and age-matched controls (n = 7, age = 4-46 years) were immunostained for glial fibrillary acidic protein (GFAP). Density of astrocytes and other glia were estimated via the optical fractionator, astrocyte somal size estimated via the nucleator, and astrocyte process length via the spaceballs probe. RESULTS: We found no evidence for alteration in astrocyte density within DLPFC white matter of individuals with autism versus controls, together with no differences in astrocyte somal size and process length. CONCLUSION: Our results suggest that astrocyte abnormalities within the white matter in the DLPFC in autism may be less pronounced than previously thought. However, astrocytic dysregulation may still exist in autism, even in the absence of gross morphological changes. Our lack of evidence for astrocyte abnormalities could have been confounded to an extent by having a small sample size and wide age range, with pathological features potentially restricted to early stages of autism. Nonetheless, future investigations would benefit from assessing functional markers of astrocytes in light of the underlying pathophysiology of autism.
  • Item
    Thumbnail Image
    A tight binding and (k)over-right-arrow . (p)over-right-arrow study of monolayer stanene
    Jiang, L ; Marconcini, P ; Hossian, MS ; Qiu, W ; Evans, R ; Macucci, M ; Skafidas, E (NATURE PORTFOLIO, 2017-09-21)
    Stanene is a single layer of tin atoms which has been discovered as an emerging material for quantum spin Hall related applications. In this paper, we present an accurate tight-binding model for single layer stanene near the Fermi level. We parameterized the onsite and hopping energies for the nearest, second nearest, and third nearest neighbor tight-binding method, both without and with spin orbital coupling. We derived the analytical solution for the [Formula: see text]and [Formula: see text] points and numerically investigated the buckling effect on the material electronic properties. In these points of the reciprocal space, we also discuss a corresponding [Formula: see text] description, obtaining the value of the [Formula: see text] parameters both analytically from the tight-binding ones, and numerically, fitting the ab-initio dispersion relations. Our models provide a foundation for large scale atomistic device transport calculations.