Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
  • Item
    Thumbnail Image
    An information-based approach to sensor management in large dynamic networks
    Kreucher, CM ; Hero, AO ; Kastella, KD ; Morelande, MR (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2007-05)
  • Item
    Thumbnail Image
    Feedback control under data rate constraints: An overview
    Nair, GN ; Fagnani, F ; Zampieri, S ; Evans, RJ (INSTITUTE OF ELECTRICAL ELECTRONICS ENGINEERS (IEEE), 2007)
    The emerging area of control with limited data rates incorporates ideas from both control and information theory. The data rate constraint introduces quantization into the feedback loop and gives the interconnected system a two-fold nature, continuous and symbolic. In this paper, we review the results available in the literature on data-rate-limited control. For linear systems, we show how fundamental tradeoffs between the data rate and control goals, such as stability, mean entry times, and asymptotic state norms, emerge naturally. While many classical tools from both control and information theory can still be used in this context, it turns out that the deepest results necessitate a novel, integrated view of both disciplines.
  • Item
    Thumbnail Image
    Control of large-scale irrigation networks
    Cantoni, M ; Weyer, E ; Li, Y ; Ooi, SK ; Mareels, I ; Ryan, M (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2007-01)
  • Item
    Thumbnail Image
    Value Function Based Reinforcement Learning in Changing Markovian Environments
    Csaji, BC ; Monostori, L (MICROTOME PUBL, 2008-08)
  • Item
    Thumbnail Image
    Adaptive stochastic resource control:: A machine learning approach
    Csaji, BC ; Monostori, L (AI ACCESS FOUNDATION, 2008)
    The paper investigates stochastic resource allocation problems with scarce, reusable resources and non-preemtive, time-dependent, interconnected tasks. This approach is a natural generalization of several standard resource management problems, such as scheduling and transportation problems. First, reactive solutions are considered and defined as control policies of suitably reformulated Markov decision processes (MDPs). We argue that this reformulation has several favorable properties, such as it has finite state and action spaces, it is aperiodic, hence all policies are proper and the space of control policies can be safely restricted. Next, approximate dynamic programming (ADP) methods, such as fitted Q-learning, are suggested for computing an efficient control policy. In order to compactly maintain the cost-to-go function, two representations are studied: hash tables and support vector regression (SVR), particularly, nu-SVRs. Several additional improvements, such as the application of limited-lookahead rollout algorithms in the initial phases, action space decomposition, task clustering and distributed sampling are investigated, too. Finally, experimental results on both benchmark and industry-related data are presented.
  • Item
  • Item
    Thumbnail Image
    Performance analysis of resource selection schemes for a large scale video-on-demand system
    Guo, J ; Wong, EWM ; Chan, S ; Taylor, P ; Zukerman, M ; Tang, K-S (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2008-01)
  • Item
    Thumbnail Image
    Automated Scoring of Obstructive Sleep Apnea and Hypopnea Events Using Short-Term Electrocardiogram Recordings
    Khandoker, AH ; Gubbi, J ; Palaniswami, M (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2009-11)
    Obstructive sleep apnea or hypopnea causes a pause or reduction in airflow with continuous breathing effort. The aim of this study is to identify individual apnea and hypopnea events from normal breathing events using wavelet-based features of 5-s ECG signals (sampling rate = 250 Hz) and estimate the surrogate apnea index (AI)/hypopnea index (HI) (AHI). Total 82,535 ECG epochs (each of 5-s duration) from normal breathing during sleep, 1638 ECG epochs from 689 hypopnea events, and 3151 ECG epochs from 1862 apnea events were collected from 17 patients in the training set. Two-staged feedforward neural network model was trained using features from ECG signals with leave-one-patient-out cross-validation technique. At the first stage of classification, events (apnea and hypopnea) were classified from normal breathing events, and at the second stage, hypopneas were identified from apnea. Independent test was performed on 16 subjects' ECGs containing 483 hypopnea and 1352 apnea events. The cross-validation and independent test accuracies of apnea and hypopnea detection were found to be 94.84% and 76.82%, respectively, for training set, and 94.72% and 79.77%, respectively, for test set. The Bland-Altman plots showed unbiased estimations with standard deviations of +/- 2.19, +/- 2.16, and +/- 3.64 events/h for AI, HI, and AHI, respectively. Results indicate the possibility of recognizing apnea/hypopnea events based on shorter segments of ECG signals.
  • Item
    Thumbnail Image
    Support Vector Machines for Automated Recognition of Obstructive Sleep Apnea Syndrome From ECG Recordings
    Khandoker, AH ; Palaniswami, M ; Karmakar, CK (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2009-01)
    Obstructive sleep apnea syndrome (OSAS) is associated with cardiovascular morbidity as well as excessive daytime sleepiness and poor quality of life. In this study, we apply a machine learning technique [support vector machines (SVMs)] for automated recognition of OSAS types from their nocturnal ECG recordings. A total of 125 sets of nocturnal ECG recordings acquired from normal subjects (OSAS - ) and subjects with OSAS (OSAS +), each of approximately 8 h in duration, were analyzed. Features extracted from successive wavelet coefficient levels after wavelet decomposition of signals due to heart rate variability (HRV) from RR intervals and ECG-derived respiration (EDR) from R waves of QRS amplitudes were used as inputs to the SVMs to recognize OSAS +/- subjects. Using leave-one-out technique, the maximum accuracy of classification for 83 training sets was found to be 100% for SVMs using a subset of selected combination of HRV and EDR features. Independent test results on 42 subjects showed that it correctly recognized 24 out of 26 OSAS + subjects and 15 out of 16 OSAS - subjects (accuracy = 92.85%; Cohen's kappa value of 0.85). For estimating the relative severity of OSAS, the posterior probabilities of SVM outputs were calculated and compared with respective apnea/hypopnea index. These results suggest superior performance of SVMs in OSAS recognition supported by wavelet-based features of ECG. The results demonstrate considerable potential in applying SVMs in an ECG-based screening device that can aid a sleep specialist in the initial assessment of patients with suspected OSAS.