Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Achieving QoS for Real-Time Bursty Applications over Passive Optical Networks
    Roy, D ; Rao, AS ; Alpcan, T ; Das, G ; Palaniswami, M ( 2021-09-05)
    Emerging real-time applications such as those classified under ultra-reliable low latency (uRLLC) generate bursty traffic and have strict Quality of Service (QoS) requirements. Passive Optical Network (PON) is a popular access network technology, which is envisioned to handle such applications at the access segment of the network. However, the existing standards cannot handle strict QoS constraints. The available solutions rely on instantaneous heuristic decisions and maintain QoS constraints (mostly bandwidth) in an average sense. Existing works with optimal strategies are computationally complex and are not suitable for uRLLC applications. This paper presents a novel computationally-efficient, far-sighted bandwidth allocation policy design for facilitating bursty traffic in a PON framework while satisfying strict QoS (age of information/delay and bandwidth) requirements of modern applications. To this purpose, first we design a delay-tracking mechanism which allows us to model the resource allocation problem from a control-theoretic viewpoint as a Model Predictive Control (MPC). MPC helps in taking far-sighted decisions regarding resource allocations and captures the time-varying dynamics of the network. We provide computationally efficient polynomial-time solutions and show its implementation in the PON framework. Compared to existing approaches, MPC reduces delay violations by approximately 15% for a delay-constrained application of 1ms target. Our approach is also robust to varying traffic arrivals.
  • Item
    Thumbnail Image
    On Joint Reconstruction of State and Input-Output Injection Attacks for Nonlinear Systems
    Yang, T ; Murguia, C ; Lv, C ; Nesic, D ; Huang, C ( 2021-03-08)
    We address the problem of robust state reconstruction for discrete-time nonlinear systems when the actuators and sensors are injected with (potentially unbounded) attack signals. Exploiting redundancy in sensors and actuators and using a bank of unknown input observers (UIOs), we propose an observer-based estimator capable of providing asymptotic estimates of the system state and attack signals under the condition that the numbers of sensors and actuators under attack are sufficiently small. Using the proposed estimator, we provide methods for isolating the compromised actuators and sensors. Numerical examples are provided to demonstrate the effectiveness of our methods.
  • Item
    Thumbnail Image
    A Robust CACC Scheme Against Cyberattacks Via Multiple Vehicle-to-Vehicle Networks
    Yang, T ; Murguia, C ; Nešić, D ; Lv, C ( 2021-06-19)
    Cooperative Adaptive Cruise Control (CACC) is a vehicular technology that allows groups of vehicles on the highway to form in closely-coupled automated platoons to increase highway capacity and safety, and decrease fuel consumption and CO2 emissions. The underlying mechanism behind CACC is the use of Vehicle-to-Vehicle (V2V) wireless communication networks to transmit acceleration commands to adjacent vehicles in the platoon. However, the use of V2V networks leads to increased vulnerabilities against faults and cyberattacks at the communication channels. Communication networks serve as new access points for malicious agents trying to deteriorate the platooning performance or even cause crashes. Here, we address the problem of increasing robustness of CACC schemes against cyberattacks by the use of multiple V2V networks and a data fusion algorithm. The idea is to transmit acceleration commands multiple times through different communication networks (channels) to create redundancy at the receiver side. We exploit this redundancy to obtain attack-free estimates of acceleration commands. To accomplish this, we propose a data-fusion algorithm that takes data from all channels, returns an estimate of the true acceleration command, and isolates compromised channels. Note, however, that using estimated data for control introduces uncertainty into the loop and thus decreases performance. To minimize performance degradation, we propose a robust H∞ controller that reduces the joint effect of estimation errors and sensor/channel noise in the platooning performance (tracking performance and string stability). We present simulation results to illustrate the performance of our approach.
  • Item
    Thumbnail Image
    Event-triggered observer design for linear systems
    Petri, E ; Postoyan, R ; Astolfi, D ; Nešić, D ; Heemels, WPMH ( 2021-09-22)
    We present an event-triggered observer design for linear time-invariant systems, where the measured output is sent to the observer only when a triggering condition is satisfied. We proceed by emulation and we first construct a continuous-time Luenberger observer. We then propose a dynamic rule to trigger transmissions, which only depends on the plant output and an auxiliary scalar state variable. The overall system is modeled as a hybrid system, for which a jump corresponds to an output transmission. We show that the proposed event-triggered observer guarantees global practical asymptotic stability for the estimation error dynamics. Moreover, under mild boundedness conditions on the plant state and its input, we prove that there exists a uniform strictly positive minimum inter-event time between any two consecutive transmissions, guaranteeing that the system does not exhibit Zeno solutions. Finally, the proposed approach is applied to a numerical case study of a lithium-ion battery.
  • Item
    Thumbnail Image
    Exploiting homogeneity for the optimal control of discrete-time systems: application to value iteration
    Granzotto, M ; Postoyan, R ; Buşoniu, L ; Nešić, D ; Daafouz, J ( 2021-09-22)
    To investigate solutions of (near-)optimal control problems, we extend and exploit a notion of homogeneity recently proposed in the literature for discrete-time systems. Assuming the plant dynamics is homogeneous, we first derive a scaling property of its solutions along rays provided the sequence of inputs is suitably modified. We then consider homogeneous cost functions and reveal how the optimal value function scales along rays. This result can be used to construct (near-)optimal inputs on the whole state space by only solving the original problem on a given compact manifold of a smaller dimension. Compared to the related works of the literature, we impose no conditions on the homogeneity degrees. We demonstrate the strength of this new result by presenting a new approximate scheme for value iteration, which is one of the pillars of dynamic programming. The new algorithm provides guaranteed lower and upper estimates of the true value function at any iteration and has several appealing features in terms of reduced computation. A numerical case study is provided to illustrate the proposed algorithm.
  • Item
    Thumbnail Image
    A Sequential Learning Algorithm for Probabilistically Robust Controller Tuning
    Chin, R ; Manzie, C ; Shames, I ; Nešić, D ; Rowe, JE ( 2021-02-18)
    We introduce a sequential learning algorithm to address a robust controller tuning problem, which in effect, finds (with high probability) a candidate solution satisfying the internal performance constraint to a chance-constrained program which has black-box functions. The algorithm leverages ideas from the areas of randomised algorithms and ordinal optimisation, and also draws comparisons with the scenario approach; these have all been previously applied to finding approximate solutions for difficult design problems. By exploiting statistical correlations through black-box sampling, we formally prove that our algorithm yields a controller meeting the prescribed probabilistic performance specification. Additionally, we characterise the computational requirement of the algorithm with a probabilistic lower bound on the algorithm's stopping time. To validate our work, the algorithm is then demonstrated for tuning model predictive controllers on a diesel engine air-path across a fleet of vehicles. The algorithm successfully tuned a single controller to meet a desired tracking error performance, even in the presence of the plant uncertainty inherent across the fleet. Moreover, the algorithm was shown to exhibit a sample complexity comparable to the scenario approach.
  • Item
    Thumbnail Image
    Ordinal Optimisation and the Offline Multiple Noisy Secretary Problem
    Chin, R ; Rowe, JE ; Shames, I ; Manzie, C ; Nešić, D ( 2021-06-02)
    We study the success probability for a variant of the secretary problem, with noisy observations and multiple offline selection. Our formulation emulates, and is motivated by, problems involving noisy selection arising in the disciplines of stochastic simulation and simulation-based optimisation. In addition, we employ the philosophy of ordinal optimisation - involving an ordinal selection rule, and a percentile notion of goal softening for the success probability. As a result, it is shown that the success probability only depends on the underlying copula of the problem. Other general properties for the success probability are also presented. Specialising to the case of Gaussian copulas, we also derive an analytic lower bound for the success probability, which may then be inverted to find sufficiently large sample sizes that guarantee a high success probability arbitrarily close to one.
  • Item
    Thumbnail Image
    Joint Parameter and State Estimation of Noisy Discrete-Time Nonlinear Systems: A Supervisory Multi-Observer Approach
    Meijer, TJ ; Dolk, VS ; Chong, MS ; Postoyan, R ; de Jager, B ; Nešić, D ; Heemels, WPMH ( 2021-09-25)
    This paper presents two schemes to jointly estimate parameters and states of discrete-time nonlinear systems in the presence of bounded disturbances and noise and where the parameters belong to a known compact set. The schemes are based on sampling the parameter space and designing a state observer for each sample. A supervisor selects one of these observers at each time instant to produce the parameter and state estimates. In the first scheme, the parameter and state estimates are guaranteed to converge within a certain margin of their true values in finite time, assuming that a sufficiently large number of observers is used and a persistence of excitation condition is satisfied in addition to other observer design conditions. This convergence margin is constituted by a part that can be chosen arbitrarily small by the user and a part determined by the noise levels. The second scheme exploits the convergence properties of the parameter estimate to perform subsequent zoom-ins on the parameter subspace to achieve stricter margins for a given number of observers. The strengths of both schemes are demonstrated using a numerical example.
  • Item
    Thumbnail Image
    Modelling of synaptic interactions between two brainstem half-centre oscillators that coordinate breathing and swallowing
    Tolmachev, P ; Dhingra, RR ; Manton, JH ; Dutschmann, M ( 2021)
    Abstract Respiration and swallowing are vital orofacial motor behaviours that require the coordination of the activity of two brainstem central pattern generators (r-CPG, sw-CPG). Here, we use computational modelling to further elucidate the neural substrate for breathing-swallowing coordination. We progressively construct several computational models of the breathing-swallowing circuit, starting from two interacting half-centre oscillators for each CPG. The models are based exclusively on neuronal nodes with spike-frequency adaptation, having a parsimonious description of intrinsic properties. These basic models undergo a stepwise integration of synaptic connectivity between central sensory relay, sw- and r-CPG neuron populations to match experimental data obtained in a perfused brainstem preparation. In the model, stimulation of the superior laryngeal nerve (SLN, 10s) reliably triggers sequential swallowing with concomitant glottal closure and suppression of inspiratory activity, consistent with the motor pattern in experimental data. Short SLN stimulation (100ms) evokes single swallows and respiratory phase resetting yielding similar experimental and computational phase response curves. Subsequent phase space analysis of model dynamics provides further understanding of SLN-mediated respiratory phase resetting. Consistent with experiments, numerical circuit-busting simulations show that deletion of ponto-medullary synaptic interactions triggers apneusis and eliminates glottal closure during sequential swallowing. Additionally, systematic variations of the synaptic strengths of distinct network connections predict vulnerable network connections that can mediate clinically relevant breathing-swallowing disorders observed in the elderly and patients with neurodegenerative disease. Thus, the present model provides novel insights that can guide future experiments and the development of efficient treatments for prevalent breathing-swallowing disorders. Key points The coordination of breathing and swallowing depends on synaptic interactions between two functionally distinct central pattern generators (CPGs) in the dorsal and ventral brainstem. We model both CPGs as half-centre oscillators with spike-frequency adaptation to identify the minimal connectivity sufficient to mediate physiologic breathing-swallowing interactions. The resultant computational model(s) can generate sequential swallowing patterns including concomitant glottal closure during simulated 10s stimulation of the superior laryngeal nerve (SLN) consistent with experimental data. In silico, short (100 ms) SLN stimulation triggers a single swallow which modulates the respiratory cycle duration consistent with experimental recordings. By varying the synaptic connectivity strengths between the two CPGs and the sensory relay neurons, and by inhibiting specific nodes of the network, the model predicts vulnerable network connections that may mediate clinically relevant breathing-swallowing disorders.