Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 32
  • Item
    Thumbnail Image
    Achieving QoS for Real-Time Bursty Applications over Passive Optical Networks
    Roy, D ; Rao, AS ; Alpcan, T ; Das, G ; Palaniswami, M ( 2021-09-05)
    Emerging real-time applications such as those classified under ultra-reliable low latency (uRLLC) generate bursty traffic and have strict Quality of Service (QoS) requirements. Passive Optical Network (PON) is a popular access network technology, which is envisioned to handle such applications at the access segment of the network. However, the existing standards cannot handle strict QoS constraints. The available solutions rely on instantaneous heuristic decisions and maintain QoS constraints (mostly bandwidth) in an average sense. Existing works with optimal strategies are computationally complex and are not suitable for uRLLC applications. This paper presents a novel computationally-efficient, far-sighted bandwidth allocation policy design for facilitating bursty traffic in a PON framework while satisfying strict QoS (age of information/delay and bandwidth) requirements of modern applications. To this purpose, first we design a delay-tracking mechanism which allows us to model the resource allocation problem from a control-theoretic viewpoint as a Model Predictive Control (MPC). MPC helps in taking far-sighted decisions regarding resource allocations and captures the time-varying dynamics of the network. We provide computationally efficient polynomial-time solutions and show its implementation in the PON framework. Compared to existing approaches, MPC reduces delay violations by approximately 15% for a delay-constrained application of 1ms target. Our approach is also robust to varying traffic arrivals.
  • Item
    Thumbnail Image
    Achieving AI-enabled Robust End-to-End Quality of Experience over Radio Access Networks
    Roy, D ; Rao, AS ; Alpcan, T ; Das, G ; Palaniswami, M ( 2022-01-13)
    Emerging applications such as Augmented Reality, the Internet of Vehicles and Remote Surgery require both computing and networking functions working in harmony. The End-to-end (E2E) quality of experience (QoE) for these applications depends on the synchronous allocation of networking and computing resources. However, the relationship between the resources and the E2E QoE outcomes is typically stochastic and non-linear. In order to make efficient resource allocation decisions, it is essential to model these relationships. This article presents a novel machine-learning based approach to learn these relationships and concurrently orchestrate both resources for this purpose. The machine learning models further help make robust allocation decisions regarding stochastic variations and simplify robust optimization to a conventional constrained optimization. When resources are insufficient to accommodate all application requirements, our framework supports executing some of the applications with minimal degradation (graceful degradation) of E2E QoE. We also show how we can implement the learning and optimization methods in a distributed fashion by the Software-Defined Network (SDN) and Kubernetes technologies. Our results show that deep learning-based modelling achieves E2E QoE with approximately 99.8\% accuracy, and our robust joint-optimization technique allocates resources efficiently when compared to existing differential services alternatives.
  • Item
    Thumbnail Image
    Online Slice Reconfiguration for End-to-End QoE in 6G Applications
    Roy, D ; Rao, AS ; Alpcan, T ; Wick, A ; Das, G ; Palaniswami, M ( 2022-01-13)
  • Item
    Thumbnail Image
    Achieving AI-Enabled Robust End-to-End Quality of Experience Over Backhaul Radio Access Networks
    Roy, D ; Rao, AS ; Alpcan, T ; Das, G ; Palaniswami, M (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2022-09-01)
    Emerging applications such as Augmented Reality, the Internet of Vehicles and Remote Surgery require both computing and networking functions working in harmony. The End-to-end (E2E) quality of experience (QoE) for these applications depends on the synchronous allocation of networking and computing resources. However, the relationship between the resources and the E2E QoE outcomes is typically stochastic and non-linear. In order to make efficient resource allocation decisions, it is essential to model these relationships. This article presents a novel machine-learning based approach to learn these relationships and concurrently orchestrate both resources for this purpose. The machine learning models further help make robust allocation decisions regarding stochastic variations and simplify robust optimization to a conventional constrained optimization. When resources are insufficient to accommodate all application requirements, our framework supports executing some of the applications with minimal degradation (graceful degradation) of E2E QoE. We also show how we can implement the learning and optimization methods in a distributed fashion by the Software-Defined Network (SDN) and Kubernetes technologies. Our results show that deep learning-based modelling achieves E2E QoE with approximately 99.8% accuracy, and our robust joint-optimization technique allocates resources efficiently when compared to existing differential services alternatives.
  • Item
    Thumbnail Image
    Achieving QoS for bursty uRLLC applications over passive optical networks
    Roy, D ; Rao, AS ; Alpcan, T ; Das, G ; Palaniswami, M (Optica Publishing Group, 2022-05-01)
    Emerging real-time applications such as those classified under ultra-reliable low latency (uRLLC) generate bursty traffic and have strict quality of service (QoS) requirements. The passive optical network (PON) is a popular access network technology, which is envisioned to handle such applications at the access segment of the network. However, the existing standards cannot handle strict QoS constraints for such applications. The available solutions rely on instantaneous heuristic decisions and maintain QoS constraints (mostly bandwidth) in an average sense. Existing proposals in generic networks with optimal strategies are computationally complex and are, therefore, not suitable for uRLLC applications. This paper presents a novel computationally efficient, far-sighted bandwidth allocation policy design for facilitating bursty uRLLC traffic in a PON framework while satisfying strict QoS (age of information/delay and bandwidth) requirements. To this purpose, first we design a delay-tracking mechanism, which allows us to model the resource allocation problem from a control-theoretic viewpoint as a model predictive control (MPC) problem. MPC helps in making far-sighted decisions regarding resource allocations and captures the time-varying dynamics of the network. We provide computationally efficient polynomial time solutions and show their implementation in the PON framework. Compared to existing approaches, MPC can improve delay violations by 15% and 45% at loads of 0.8 and 0.9, respectively, for delay-constrained applications of 1 ms and 4 ms. Our approach is also robust to varying traffic arrivals.
  • Item
  • Item
    Thumbnail Image
    The importance of spatial distribution when analysing the impact of electric vehicles on voltage stability in distribution networks
    de Hoog, J ; Muenzel, V ; Jayasuriya, DC ; Alpcan, T ; Brazil, M ; Thomas, DA ; Mareels, I ; Dahlenburg, G ; Jegatheesan, R (SPRINGER HEIDELBERG, 2015-03-01)
  • Item
    No Preview Available
    A Quantitative Risk Framework for DER-rich Power System Planning and Decision Making
    Demazy, A ; Alpcan, T ; Mareels, I (ELSEVIER, 2020-01-01)
  • Item
    Thumbnail Image
    A Probabilistic Reverse Power Flows Scenario Analysis Framework
    Demazy, A ; Alpcan, T ; Mareels, I (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2020-01-01)
  • Item
    Thumbnail Image
    Wind Versus Storage Allocation for Price Management in Wholesale Electricity Markets
    Masoumzadeh, A ; Nekouei, E ; Alpcan, T (Institute of Electrical and Electronics Engineers, 2020-04-01)
    This paper investigates the impacts of installing regulated wind and electricity storage on average price and price volatility in electricity markets. A stochastic bi-level optimization model is developed, which computes the optimal allocation of new wind and battery capacities, by minimizing a weighted sum of the average market price and price volatility. A fixed budget is allocated on wind and battery capacities in the upper-level problem. The operation of strategic/regulated generation, storage, and transmission players is simulated in the lower-level problem using a stochastic (Bayesian) Cournot-based game model. Australia's national electricity market, which is experiencing occasional price peaks, is considered as the case study. Our simulation results quantitatively illustrate that the regulated wind is more efficient than storage in reducing the average price, while the regulated storage more effectively reduces the price volatility. According to our numerical results, the storage-only solution reduces the average price at most by 9.4%, and the wind-only solution reduces the square root of price volatility at most by 39.3%. However, an optimal mixture of wind and storage can reduce the mean price by 17.6% and the square root of price volatility by 48.1%. It also increases the consumer surplus by 1.52%. Moreover, the optimal mixture of wind and storage is a profitable solution unlike the storage-only solution.