Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 80
  • Item
    Thumbnail Image
    A robust algorithm for foreground extraction in crowded scenes
    Rao, AS ; Gubbi, J ; Marusic, S ; Palaniswami, M (IEEE, 2012-12-01)
    The widespread availability of surveillance cameras and digital technology has improved video based security measures in public places. Surveillance systems have been assisting officials both in civil and military applications. It is helping to identify unlawful activities by means of uninterrupted transmission of surveillance videos. By this, the system is adding extraneous onus on to the already existing workload of security officers. Instead, if the surveillance system is intelligent and efficient enough to identify the events of interest and alert the officers, it alleviates the burden of continuous monitoring. In other words, our existing surveillance systems are lacking to identify the objects that are dissimilar in shape, size, and color especially in identifying human beings (nonrigid motions). Global illumination changes, frequent occurrences of shadows, insufficient lighting conditions, unique properties of slow and fast moving objects, unforeseen appearance of objects and its behavior, availability of system memory, etc., may be ascribed to the limitations of existing systems. In this paper, we present a filtering technique to extract foreground information, which uses RGB component and chrominance channels to neutralize the effects of nonuniform illumination, remove shadows, and detect both slow-moving and distant objects.
  • Item
    Thumbnail Image
    A Pilot Study of Urban Noise Monitoring Architecture Using Wireless Sensor Networks
    Gubbi, J ; Marusic, S ; Rao, AS ; Law, YW ; Palaniswami, M (IEEE, 2013-01-01)
    Internet of Things (IoT) is denned as interconnection of sensing and actuating devices providing the ability to share information across platforms through a unified framework, developing a common operating picture for enabling innovative applications. As the world urban population is set to cross unprecedented levels, adequate provision of services and infrastructure poses huge challenges. The emerging IoT that offers ubiquitous sensing and actuation can be utilized effectively for managing urban environments. In this paper, a new architecture for noise monitoring in urban environments is proposed. The architecture is scalable and applicable to other sensors required for city management. In addition to the architecture, a new noise monitoring hardware platform is reported and visualization of the data is presented. An emerging citizen centric participatory sensing is discussed in the context of noise monitoring.
  • Item
    Thumbnail Image
    A Pilot Study on the use of Accelerometer Sensors for Monitoring Post Acute Stroke Patients
    Gubbi, J ; Kumar, D ; Rao, AS ; Yan, B ; Palaniswami, M (IEEE, 2013)
    The high incidence of stroke has raised a major concern among health professionals in recent years. Concerted efforts from medical and engineering communities are being exercised to tackle the problem at its early stage. In this direction, a pilot study to analyze and detect the affected arm of the stroke patient based on hand movements is presented. The premise is that the correlation of magnitude of the activities of the two arms vary significantly for stroke patients from controls. Further, the cross-correlation of right and left arms for three axes are differentiable for patients and controls. A total of 22 subjects (15 patients and 7 controls) were included in this study. An overall accuracy of 95.45% was obtained with sensitivity of 1 and specificity of 0.86 using correlation based method.
  • Item
    Thumbnail Image
    Crowd Density Estimation Based on Optical Flow and Hierarchical Clustering
    Rao, AS ; Gubbi, J ; Marusic, S ; Stanley, P ; Palaniswami, M (IEEE, 2013-01-01)
    Crowd density estimation has gained much attention from researchers recently due to availability of low cost cameras and communication bandwidth. In video surveillance applications, counting people and creating a temporal profile is of high interest. Surveillance systems face difficulties in detecting motion from the scene due to varying environmental conditions and occlusion. Instead of detecting and tracking individual person, density estimation is an approximate method to count people. The approximation is often more accurate than individual tracking in occluded scenarios. In this work, a new technique to estimate crowd density is proposed. A block-based dense optical flow with spatial and temporal filtering is used to obtain velocities in order to infer the locations of objects in crowded scenarios. Furthermore, a hierarchical clustering is employed to cluster the objects based on Euclidean distance metric. The Cophenetic correlation coefficient for the clusters highlighted the fact that our preprocessing and localizing of object movements form hierarchical clusters that are structured well with reasonable accuracy without temporal post-processing.
  • Item
    Thumbnail Image
    Determination of Object Directions Using Optical Flow for Crowd Monitoring
    Rao, AS ; Gubbi, J ; Marusic, S ; Maher, A ; Palaniswami, M ; Bebis, G ; Boyle, R ; Parvin, B ; Koracin, D ; Li, B ; Porikli, F ; Zordan, V ; Klosowski, J ; Coquillart, S ; Luo, X ; Chen, M ; Gotz, D (SPRINGER-VERLAG BERLIN, 2013-01-01)
    Determination of object direction in a multi-camera tracking system is critical. The absence of object direction from other cameras pose challenges if the object is along the optical axis. The problem of determining object direction worsens further if the cameras in the existing infrastructure are improperly placed and are uncontrollable. To determine the direction of an object in such situations, three methods based on optical flow (OF) are presented. The first method uses centroids of optical flow vector magnitudes and Kalman filter for tracking and is suitable for less crowded scenarios. The second method uses geometric moments to evaluate the flow vector distribution and to ascertain the direction in case of crowded scenarios by partitioning the scene and then applying moments to individual partitions independently. The third method is appropriate for small-sized objects near vanishing points where global object motion is less. During surveillance, whether multi-object, single-object or crowded scenarios, the aforementioned methods are applicable accordingly. The results show that the object directions can be accurately inferred from three methods for different scenarios.
  • Item
    Thumbnail Image
    Electrical Stimulation of Neural Tissue Modeled as a Cellular Composite: Point Source Electrode in an Isotropic Tissue
    Monfared, O ; Nesic, D ; Freestone, DR ; Grayden, DB ; Tahayori, B ; Meffin, H (IEEE, 2014)
    Standard volume conductor models of neural electrical stimulation assume that the electrical properties of the tissue are well described by a conductivity that is smooth and homogeneous at a microscopic scale. However, neural tissue is composed of tightly packed cells whose membranes have markedly different electrical properties to either the intra- or extracellular space. Consequently, the electrical properties of tissue are highly heterogeneous at the microscopic scale: a fact not accounted for in standard volume conductor models. Here we apply a recently developed framework for volume conductor models that accounts for the cellular composition of tissue. We consider the case of a point source electrode in tissue comprised of neural fibers crossing each other equally in all directions. We derive the tissue admittivity (that replaces the standard tissue conductivity) from single cell properties, and then calculate the extracellular potential. Our findings indicate that the cellular composition of tissue affects the spatiotemporal profile of the extracellular potential. In particular, the full solution asymptotically approaches a near-field limit close to the electrode and a far-field limit far from the electrode. The near-field and far-field approximations are solutions to standard volume conductor models, but differ from each other by nearly an order or magnitude. Consequently the full solution is expected to provide a more accurate estimate of electrical potentials over the full range of electrode-neurite separations.
  • Item
    Thumbnail Image
    Averaging for nonlinear systems on Riemannian manifolds
    Taringoo, F ; Nesic, D ; Tan, Y ; Dower, PM (IEEE, 2013)
    This paper provides a derivation of the averaging methods for nonlinear time-varying dynamical systems defined on Riemannian manifolds. We extend the results on ℝ n to Riemannian manifolds by employing the language of differential geometry.
  • Item
    Thumbnail Image
    Extremum seeking control for nonlinear systems on compact Riemannian manifolds
    Taringoo, F ; Nesic, D ; Tan, Y ; DOWER, PM (IEEE Press, 2014)
    This paper formulates the extremum seeking control problem for nonlinear dynamical systems which evolve on Riemannian manifolds and presents stability results for a class of numerical algorithms defined in this context. The results are obtained based upon an extension of extremum seeking algorithms in Euclidean spaces and a generalization of Lyapunov stability theory for dynamical systems defined on Rimannian manifolds. We employ local properties of Lyapunov functions to extend the singular perturbation analysis on Riemannian manifolds. Consequently, the results of the singular perturbation on manifolds are used to obtain the convergence of extremum seeking algorithms for dynamical systems on Riemannian manifolds.
  • Item
    Thumbnail Image
    Closeness of solutions and averaging for nonlinear systems on Riemannian manifolds
    Taringoo, F ; Nesic, D ; Tan, Y ; Dower, PM (IEEE, 2013)
    An averaging result for periodic dynamical systems evolving on Euclidean spaces is extended to those evolving on (differentiable) Riemannian manifolds. Using standard tools from differential geometry, a perturbation result for time-varying dynamical systems is developed that measures closeness of trajectories via a suitable metric on a finite time horizon. This perturbation result is then extended to bound excursions in the trajectories of periodic dynamical systems from those of their respective averages, on an infinite time horizon, yielding the specified averaging result. Some simple examples further illustrating this result are also presented.
  • Item
    Thumbnail Image
    A UNIFYING FRAMEWORK FOR ANALYSIS AND DESIGN OF EXTREMUM SEEKING CONTROLLERS
    Nesic, D ; Tan, Y ; Manzie, C ; Mohammadi, A ; Moase, W (IEEE, 2012-01-01)
    We summarize a unifying design approach to continuous-time extremum seeking that was recently reported by the authors. This approach is based on a feedback control paradigm that was to the best of our knowledge explicitly summarized for the first time in this form in our recent work. This paradigm covers some existing extremum seeking schemes, provides a direct link to off-line optimization and can be used as a unifying framework for design of novel extremum seeking schemes. Moreover, we show that other extremum seeking problem formulations can be interpreted using this unifying viewpoint. We believe that this unifying view will be invaluable to systematically design and analyze extremum seeking controllers in various settings.