Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    All-Graphene Planar Double-Quantum-Dot Resonant Tunneling Diodes
    Al-Dirini, F ; Mohammed, MA ; Hossain, FM ; Nirmalathas, TA ; Skafidas, E (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016-01)
  • Item
    Thumbnail Image
    Highly Effective Conductance Modulation in Planar Silicene Field Effect Devices Due to Buckling
    Al-Dirini, F ; Hossain, FM ; Mohammed, MA ; Nirmalathas, A ; Skafidas, E (NATURE PUBLISHING GROUP, 2015-10-06)
    Silicene is an exciting two-dimensional material that shares many of graphene's electronic properties, but differs in its structural buckling. This buckling allows opening a bandgap in silicene through the application of a perpendicular electric field. Here we show that this buckling also enables highly effective modulation of silicene's conductance by means of an in-plane electric field applied through silicene side gates, which can be realized concurrently within the same silicene monolayer. We illustrate this by using silicene to implement Self-Switching Diodes (SSDs), which are two-dimensional field effect nanorectifiers realized within a single silicene monolayer. Our quantum simulation results show that the atomically-thin silicene SSDs, with sub-10 nm dimensions, achieve a current rectification ratio that exceeds 200, without the need for doping, representing a 30 fold enhancement over graphene SSDs. We attribute this enhancement to a bandgap opening due to the in-plane electric field, as a consequence of silicene's buckling. Our results suggest that silicene is a promising material for the realization of planar field effect devices.
  • Item
    Thumbnail Image
    High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores
    Hossain, MS ; Al-Dirini, F ; Hossain, FM ; Skafidas, E (NATURE PORTFOLIO, 2015-06-17)
    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator.
  • Item
    No Preview Available
    Graphene Field Effect Nanopore Glycine Detector
    Al-Dirini, F ; Hossain, MS ; Qiu, W ; Hossain, FM ; Nirmalathas, A ; Skafidas, E (IEEE, 2014)