 Electrical and Electronic Engineering  Research Publications
Electrical and Electronic Engineering  Research Publications
Permanent URI for this collection
2 results
Filters
Reset filtersSettings
Statistics
Citations
Search Results
Now showing
1  2 of 2

ItemOptimal Routing for MultiUser MultiHop Relay Networks Via Dynamic ProgrammingDayarathna, S ; Senanayake, R ; Evans, J (IEEEINST ELECTRICAL ELECTRONICS ENGINEERS INC, 20220523)In this letter, we study the relay selection problem in multiuser, multihop relay networks with the objective of minimizing the network outage probability. When only one user is present, it is well known that the optimal relay selection problem can be solved efficiently via dynamic programming. This solution breaks down in the multiuser scenario due to dependence between users. We resolve this challenge using a novel relay aggregation approach. On the expanded trellis, dynamic programming can be used to solve the optimal relay selection problem with computational complexity linear in the number of hops. Numerical examples illustrate the efficient use of this algorithm for relay networks.

ItemSumRate Optimization in Flexible HalfDuplex Networks With Transmitter/Receiver SchedulingDayarathna, S ; Senanayake, R ; Evans, J (IEEEINST ELECTRICAL ELECTRONICS ENGINEERS INC, 202207)In this paper, we focus on the problem of transmitter and receiver scheduling to maximize the achievable sumrate of a flexible halfduplex network where nodes have the flexibility to either transmit, receive or be silent in a given time slot. We consider a network with multiple transmitters and receivers where each transmitter has specific information it needs to send to a set of receiving nodes. First, we conduct some structural analysis and show that the achievable sumrate is maximized when each transmitter only transmits to a single receiver at a given time. Next, we consider one instance of the flexible network and by reducing the symmetric multiple receiver network to a single receiver network, we also show that the achievable sumrate is maximized when either one transmitter or all the transmitters transmit. In fact, there exists a unique received signaltonoise ratio at which the optimality changes from alltoone. Finally, we design a novel lowcost algorithm that gives a suboptimal solution to the achievable sumrate maximization problem in a flexible halfduplex network. We also provide a comprehensive comparison of the proposed algorithm with respect to existing resource allocation techniques, and observe that our proposed algorithm provides significant sumrate gains.