Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    PV Controller Modification and its Impact on Assisting PV Penetration
    Mohanan, VAV ; Evans, RJ ; Mareels, I ; Kolluri, RR (ACM, 2020-06-12)
    Large-scale penetration of grid-following inverters into the electricity network presents various technical challenges to grid reliability. It is well-known that the ability of a grid to maintain a stable frequency is inhibited by adding traditional grid-tied photovoltaic (PV) generators. In this work, a detailed model of a simplified grid is presented, and it is shown that the proportion of PV generation and instability are positively correlated. The main instability phenomenon is captured by a Hopf Bifurcation in the field dynamics of the synchronous generator. Such a Hopf bifurcation severely constricts the feasible operating domain of the grid and may hinder normal operation. Modifying traditional grid-tied PV controllers and its impact on grid stability is assessed through small-signal, bifurcation and transient numerical analysis. Traditional PV controllers that are modified to virtual synchronous machine (VSM) type controllers show improvement in system damping. Unlike traditional grid-tied inverters, VSM inverters participate in critical modes of the synchronous generator (SG) and augment the operational domain of the SG+VSM system significantly, more importantly, almost eliminating the need for renewable energy curtailment. A case-study approach is used to present some key results on improvements in damping ratio, feasibility domain and transient stability. Finally, a feasibility domain curve is introduced and discussed in an aim to generalize the overall stability of any such system.
  • Item
    Thumbnail Image
    Lower Bounds on the Best-Case Complexity of Solving a Class of Non-cooperative Games
    Nekouei, E ; Alpcan, T ; Nair, GN ; Evans, RJ (Elsevier, 2016)
    This paper studies the complexity of solving the class G of all N-player non-cooperative games with continuous action spaces that admit at least one Nash equilibrium (NE). We consider a distributed Nash seeking setting where agents communicate with a set of system nodes (SNs), over noisy communication channels, to obtain the required information for updating their actions. The complexity of solving games in the class G is defined as the minimum number of iterations required to find a NE of any game in G with ε accuracy. Using information-theoretic inequalities, we derive a lower bound on the complexity of solving the game class G that depends on the Kolmogorov 2ε-capacity of the constraint set and the total capacity of the communication channels. We also derive a lower bound on the complexity of solving games in G which depends on the volume and surface area of the constraint set.