Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Electrical Stimulation of Neural Tissue Modeled as a Cellular Composite: Point Source Electrode in an Isotropic Tissue
    Monfared, O ; Nesic, D ; Freestone, DR ; Grayden, DB ; Tahayori, B ; Meffin, H (IEEE, 2014)
    Standard volume conductor models of neural electrical stimulation assume that the electrical properties of the tissue are well described by a conductivity that is smooth and homogeneous at a microscopic scale. However, neural tissue is composed of tightly packed cells whose membranes have markedly different electrical properties to either the intra- or extracellular space. Consequently, the electrical properties of tissue are highly heterogeneous at the microscopic scale: a fact not accounted for in standard volume conductor models. Here we apply a recently developed framework for volume conductor models that accounts for the cellular composition of tissue. We consider the case of a point source electrode in tissue comprised of neural fibers crossing each other equally in all directions. We derive the tissue admittivity (that replaces the standard tissue conductivity) from single cell properties, and then calculate the extracellular potential. Our findings indicate that the cellular composition of tissue affects the spatiotemporal profile of the extracellular potential. In particular, the full solution asymptotically approaches a near-field limit close to the electrode and a far-field limit far from the electrode. The near-field and far-field approximations are solutions to standard volume conductor models, but differ from each other by nearly an order or magnitude. Consequently the full solution is expected to provide a more accurate estimate of electrical potentials over the full range of electrode-neurite separations.
  • Item
    Thumbnail Image
    A Neural Mass Model of Spontaneous Burst Suppression and Epileptic Seizures
    Freestone, DR ; Nesic, D ; Jafarian, A ; Cook, MJ ; Grayden, DB (IEEE, 2013)
    The paper presents a neural mass model that is capable of simulating the transition to and from various forms of paroxysmal activity such as burst suppression and epileptic seizure-like waveforms. These events occur without changing parameters in the model. The model is based on existing neural mass models, with the addition of feedback of fast dynamics to create slowly time varying parameters, or slow states. The goal of this research is to establish a link between system properties that modulate neural activity and the fast changing dynamics, such as membrane potentials and firing rates that can be manipulated using electrical stimulation. Establishing this link is likely to be a necessary component of a closed-loop system for feedback control of pathological neural activity.
  • Item
    Thumbnail Image
    INFERRING PATIENT-SPECIFIC PHYSIOLOGICAL PARAMETERS FROM INTRACRANIAL EEG: APPLICATION TO CLINICAL DATA
    Shmuely, S ; Freestone, DR ; Grayden, DB ; Nesic, D ; Cook, M (WILEY-BLACKWELL, 2012-09-01)
    Purpose: Intracranial EEG (iEEG) provides information regarding where and when seizures occur, whilst the underlying mechanisms are hidden. However physiologically plausible mechanisms for seizure generation and termination are explained by neural mass models, which describe the macroscopic neural dynamics. Fusion of models with patient-specific data allows estimation and tracking of the normally hidden physiological parameters. By monitoring changes in physiology, a new understanding of seizures can be achieved. This work addresses model-data fusion for iEEG for application in a clinical setting. Method: Data was recorded from three patients undergoing evaluation for epilepsy-related surgery at St. Vincent's Hospital, Melbourne. Using this data, we created patient-specific neural mass mathematical models based on the formulation of Jansen and Rit (1995). The parameters that were estimated include the synaptic gains, time constants, and the firing threshold. The estimation algorithm utilized the Unscented Kalman Filter (Julier and Uhlmann, 1997). Result: We demonstrate how parameters changed in relation to seizure initiation, evolution and termination. We also show within-patient (across different seizures) and between-patient specificity of the parameter estimates. Conclusion: The fusion of clinical data and mathematical models can be used to infer valuable information about the underlying mechanisms of epileptic seizure generation. This information could be used to develop novel therapeutic strategies
  • Item
    Thumbnail Image
    INFERRING PATIENT-SPECIFIC PHYSIOLOGICAL PARAMETERS FROM INTRACRANIAL EEG: THEORETICAL STUDIES
    Freestone, DR ; Grayden, DB ; Cook, M ; Nesic, D (WILEY-BLACKWELL, 2012-09)
  • Item
    Thumbnail Image
    PATIENT-SPECIFIC NEURAL MASS MODELING - STOCHASTIC AND DETERMINISTIC METHODS
    Freestone, DR ; Kuhlmann, L ; Chong, MS ; Nesic, D ; Grayden, DB ; Aram, P ; Postoyan, R ; CooK, MJ ; Tetzlaff, R ; Elger, CE ; Lehnertz, K (WORLD SCIENTIFIC PUBL CO PTE LTD, 2013)
    Deterministic and stochastic methods for online state and parameter estimation for neural mass models are presented and applied to synthetic and real seizure electrocorticographic signals in order to determine underlying brain changes that cannot easily be measured. The first ever online estimation of neural mass model parameters from real seizure data is presented. It is shown that parameter changes occur that are consistent with expected brain changes underlying seizures, such as increases in postsynaptic potential amplitudes, increases in the inhibitory postsynaptic time-constant and decreases in the firing threshold at seizure onset, as well as increases in the firing threshold as the seizure progresses towards termination. In addition, the deterministic and stochastic estimation methods are compared and contrasted. This work represents an important foundation for the development of biologically-inspired methods to image underlying brain changes and to develop improved methods for neurological monitoring, control and treatment.
  • Item
    Thumbnail Image
    Analytic synchronization conditions for a network of Wilson and Cowan oscillators
    Ahmadizadeh, S ; Nesic, D ; Grayden, DB ; Freestone, DR (IEEE, 2015)
    We investigate the problem of synchronization in a network of homogeneous Wilson-Cowan oscillators with diffusive coupling. Such networks can be used to model the behavior of populations of neurons in cortical tissue, referred to as neural mass models. A new approach is proposed to address local synchronization for these types of neural mass models. By exploiting the linearized model around a limit cycle, we analyze synchronization within a network for weak, intermediate, and strong coupling. We use two-time scale averaging and the Chetaev theorem to analytically check the absence or presence of synchronization in the network with weak coupling. We also utilize the Chetaev theorem to analytically prove synchronization death in a network with strong coupling. For intermediate coupling, we use a recently proposed numerical approach to prove synchronization in the network. Simulation results confirm and illustrate our results.
  • Item
    Thumbnail Image
    Electrical probing of cortical excitability in patients with epilepsy
    Freestone, DR ; Kuhlmann, L ; Grayden, DB ; Burkitt, AN ; Lai, A ; Nelson, TS ; Vogrin, S ; Murphy, M ; D'Souza, W ; Badawy, R ; Nesic, D ; Cook, MJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2011-12)
    Standard methods for seizure prediction involve passive monitoring of intracranial electroencephalography (iEEG) in order to track the 'state' of the brain. This paper introduces a new method for measuring cortical excitability using an electrical probing stimulus. Electrical probing enables feature extraction in a more robust and controlled manner compared to passively tracking features of iEEG signals. The probing stimuli consist of 100 bi-phasic pulses, delivered every 10 min. Features representing neural excitability are estimated from the iEEG responses to the stimuli. These features include the amplitude of the electrically evoked potential, the mean phase variance (univariate), and the phase-locking value (bivariate). In one patient, it is shown how the features vary over time in relation to the sleep-wake cycle and an epileptic seizure. For a second patient, it is demonstrated how the features vary with the rate of interictal discharges. In addition, the spatial pattern of increases and decreases in phase synchrony is explored when comparing periods of low and high interictal discharge rates, or sleep and awake states. The results demonstrate a proof-of-principle for the method to be applied in a seizure anticipation framework. This article is part of a Supplemental Special Issue entitled The Future of Automated Seizure Detection and Prediction.
  • Item
    Thumbnail Image
    On synchronization of networks of Wilson-Cowan oscillators with diffusive coupling
    Ahmadizadeh, S ; Nesic, D ; Freestone, DR ; Grayden, DB (PERGAMON-ELSEVIER SCIENCE LTD, 2016-09)
    We investigate the problem of synchronization in a network of homogeneous Wilson-Cowan oscillators with diffusive coupling. Such networks can be used to model the behavior of populations of neurons in cortical tissue, referred to as neural mass models. A new approach is proposed to address conditions for local synchronization for this type of neural mass models. By analyzing the linearized model around a limit cycle, we study synchronization within a network with direct coupling. We use both analytical and numerical approaches to link the presence or absence of synchronized behavior to the location of eigenvalues of the Laplacian matrix. For the analytical part, we apply two-time scale averaging and the Chetaev theorem, while, for the remaining part, we use a recently proposed numerical approach. Sufficient conditions are established to highlight the effect of network topology on synchronous behavior when the interconnection is undirected. These conditions are utilized to address points that have been previously reported in the literature through simulations: synchronization might persist or vanish in the presence of perturbation in the interconnection gains. Simulation results confirm and illustrate our results.
  • Item
    Thumbnail Image
    Model-based estimation of intra-cortical connectivity using electrophysiological data
    Aram, P ; Freestone, DR ; Cook, MJ ; Kadirkamanathan, V ; Grayden, DB (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2015-09)
    This paper provides a new method for model-based estimation of intra-cortical connectivity from electrophysiological measurements. A novel closed-form solution for the connectivity function of the Amari neural field equations is derived as a function of electrophysiological observations. The resultant intra-cortical connectivity estimate is driven from experimental data, but constrained by the mesoscopic neurodynamics that are encoded in the computational model. A demonstration is provided to show how the method can be used to image physiological mechanisms that govern cortical dynamics, which are normally hidden in clinical data from epilepsy patients. Accurate estimation performance is demonstrated using synthetic data. Following the computational testing, results from patient data are obtained that indicate a dominant increase in surround inhibition prior to seizure onset that subsides in the cases when the seizures spread.
  • Item
    Thumbnail Image
    A Generalizable Brain-Computer Interface (BCI) Using Machine Learning for Feature Discovery
    Nurse, ES ; Karoly, PJ ; Grayden, DB ; Freestone, DR ; Lebedev, MA (PUBLIC LIBRARY SCIENCE, 2015-06-26)
    This work describes a generalized method for classifying motor-related neural signals for a brain-computer interface (BCI), based on a stochastic machine learning method. The method differs from the various feature extraction and selection techniques employed in many other BCI systems. The classifier does not use extensive a-priori information, resulting in reduced reliance on highly specific domain knowledge. Instead of pre-defining features, the time-domain signal is input to a population of multi-layer perceptrons (MLPs) in order to perform a stochastic search for the best structure. The results showed that the average performance of the new algorithm outperformed other published methods using the Berlin BCI IV (2008) competition dataset and was comparable to the best results in the Berlin BCI II (2002-3) competition dataset. The new method was also applied to electroencephalography (EEG) data recorded from five subjects undertaking a hand squeeze task and demonstrated high levels of accuracy with a mean classification accuracy of 78.9% after five-fold cross-validation. Our new approach has been shown to give accurate results across different motor tasks and signal types as well as between subjects.