Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Novel features for capturing temporal variations of rhythmic limb movement to distinguish convulsive epileptic and psychogenic nonepileptic seizures
    Kusmakar, S ; Karmakar, C ; Yan, B ; Muthuganapathy, R ; Kwan, P ; O'Brien, TJ ; Palaniswami, MS (WILEY, 2019-01)
    OBJECTIVE: To investigate the characteristics of motor manifestation during convulsive epileptic and psychogenic nonepileptic seizures (PNES), captured using a wrist-worn accelerometer (ACM) device. The main goal was to find quantitative ACM features that can differentiate between convulsive epileptic and convulsive PNES. METHODS: In this study, motor data were recorded using wrist-worn ACM-based devices. A total of 83 clinical events were recorded: 39 generalized tonic-clonic seizures (GTCS) from 12 patients with epilepsy, and 44 convulsive PNES from 7 patients (one patient had both GTCS and PNES). The temporal variations in the ACM traces corresponding to 39 GTCS and 44 convulsive PNES events were extracted using Poincaré maps. Two new indices-tonic index (TI) and dispersion decay index (DDI)-were used to quantify the Poincaré-derived temporal variations for every GTCS and convulsive PNES event. RESULTS: The TI and DDI of Poincaré-derived temporal variations for GTCS events were higher in comparison to convulsive PNES events (P < 0.001). The onset and the subsiding patterns captured by TI and DDI differentiated between epileptic and convulsive nonepileptic seizures. An automated classifier built using TI and DDI of Poincaré-derived temporal variations could correctly differentiate 42 (sensitivity: 95.45%) of 44 convulsive PNES events and 37 (specificity: 94.87%) of 39 GTCS events. A blinded review of the Poincaré-derived temporal variations in GTCS and convulsive PNES by epileptologists differentiated 26 (sensitivity: 70.27%) of 44 PNES events and 33 (specificity: 86.84%) of 39 GTCS events correctly. SIGNIFICANCE: In addition to quantifying the motor manifestation mechanism of GTCS and convulsive PNES, the proposed approach also has diagnostic significance. The new ACM features incorporate clinical characteristics of GTCS and PNES, thus providing an accurate, low-cost, and practical alternative to differential diagnosis of PNES.
  • Item
    Thumbnail Image
    A Label-Free, Quantitative Fecal Hemoglobin Detection Platform for Colorectal Cancer Screening
    Soraya, GV ; Nguyen, TC ; Abeyrathne, CD ; Huynh, DH ; Chan, J ; Nguyen, PD ; Nasr, B ; Chana, G ; Kwan, P ; Skafidas, E (MDPI, 2017-06)
    The early detection of colorectal cancer is vital for disease management and patient survival. Fecal hemoglobin detection is a widely-adopted method for screening and early diagnosis. Fecal Immunochemical Test (FIT) is favored over the older generation chemical based Fecal Occult Blood Test (FOBT) as it does not require dietary or drug restrictions, and is specific to human blood from the lower digestive tract. To date, no quantitative FIT platforms are available for use in the point-of-care setting. Here, we report proof of principle data of a novel low cost quantitative fecal immunochemical-based biosensor platform that may be further developed into a point-of-care test in low-resource settings. The label-free prototype has a lower limit of detection (LOD) of 10 µg hemoglobin per gram (Hb/g) of feces, comparable to that of conventional laboratory based quantitative FIT diagnostic systems.
  • Item
    Thumbnail Image
    Ultrasensitive and label-free biosensor for the detection of Plasmodium falciparum histidine-rich protein II in saliva.
    Soraya, GV ; Abeyrathne, CD ; Buffet, C ; Huynh, DH ; Uddin, SM ; Chan, J ; Skafidas, E ; Kwan, P ; Rogerson, SJ (Nature Publishing Group, 2019-11-25)
    Malaria elimination is a global public health priority. To fulfil the demands of elimination diagnostics, we have developed an interdigitated electrode sensor platform targeting the Plasmodium falciparum Histidine Rich Protein 2 (PfHRP2) protein in saliva samples. A protocol for frequency-specific PfHRP2 detection in phosphate buffered saline was developed, yielding a sensitivity of 2.5 pg/mL based on change in impedance magnitude of the sensor. This protocol was adapted and optimized for use in saliva with a sensitivity of 25 pg/mL based on change in resistance. Further validation demonstrated detection in saliva spiked with PfHRP2 from clinical isolates in 8 of 11 samples. With a turnaround time of ~2 hours, the label-free platform based on impedance sensors has the potential for miniaturization into a point-of-care diagnostic device for malaria elimination.
  • Item
    Thumbnail Image
    The utility of an automated and ambulatory device for detecting and differentiating epileptic and psychogenic non-epileptic seizures.
    Naganur, VD ; Kusmakar, S ; Chen, Z ; Palaniswami, MS ; Kwan, P ; O'Brien, TJ (Wiley-Blackwell Publishing, Inc., 2019-06)
    Objective: Accurate differentiation between epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES) can be challenging based on history alone. Inpatient video EEG monitoring (VEM) is often needed for a definitive diagnosis. However, VEM is highly resource intensive, is of limited availability, and cannot be undertaken over long periods. Previous research has shown that time-frequency analysis of accelerometer data could be utilized to differentiate between ES and PNES. Using a seizure detection and classification algorithm, we sought to examine the diagnostic utility of an automated analysis with an ambulatory accelerometer. Methods: A wrist-worn device was used to collect accelerometer data from patients during VEM admission, for diagnostic evaluation of convulsive seizures. An automated process, that involved the use of K-means clustering and support vector machines, was used to detect and classify each seizure as ES or PNES. The results were compared with VEM diagnoses determined by epileptologists blinded to the accelerometer data. Results: Twenty-four convulsive seizures, consisting of at least 20 seconds of sustained continuous activity, recorded from 11 patients during inpatient VEM (13 PNES from five patients and 11 ES from six patients) were included for analysis. The automated system detected all convulsive seizures (ES, PNES) from >661 hours of recording with 67 false alarms (2.4 per 24 hours). The sensitivity and specificity for classifying ES from PNES were 72.7% and 100%, respectively. The positive and negative predictive values for classifying PNES were 81.3% and 100%, respectively. There was no significant difference between the classification results obtained from the automation process and the VEM diagnoses. Significance: This automated system can potentially provide a wearable out-of-hospital seizure diagnostic monitoring system.
  • Item
    Thumbnail Image
    Rapid Detection of HLA-B*57:01-Expressing Cells Using a Label-Free Interdigitated Electrode Biosensor Platform for Prevention of Abacavir Hypersensitivity in HIV Treatment
    Chan, J ; Soraya, GV ; Craig, L ; Uddin, SM ; Todaro, M ; Huynh, DH ; Abeyrathne, CD ; Kostenko, L ; McCluskey, J ; Skafidas, E ; Kwan, P (MDPI AG, 2019-08-20)
    Pre-treatment screening of individuals for human leukocyte antigens (HLA) HLA-B*57:01 is recommended for the prevention of life-threatening hypersensitivity reactions to abacavir, a drug widely prescribed for HIV treatment. However, the implementation of screening in clinical practice is hindered by the slow turnaround time and high cost of conventional HLA genotyping methods. We have developed a biosensor platform using interdigitated electrode (IDE) functionalized with a monoclonal antibody to detect cells expressing HLA-B*57:01. This platform was evaluated using cell lines and peripheral blood mononuclear cells expressing different HLA-B alleles. The functionalized IDE sensor was able to specifically capture HLA-B*57:01 cells, resulting in a significant change in the impedance magnitude in 20 min. This IDE platform has the potential to be further developed to enable point-of-care HLA-B*57:01 screening
  • Item
    Thumbnail Image
    Development of an Ultrasensitive Impedimetric Immunosensor Platform for Detection of Plasmodium Lactate Dehydrogenase
    Low, YK ; Chan, J ; Soraya, GV ; Buffet, C ; Abeyrathne, CD ; Huynh, DH ; Skafidas, E ; Kwan, P ; Rogerson, SJ (MDPI, 2019-06-01)
    Elimination of malaria is a global health priority. Detecting an asymptomatic carrier of Plasmodium parasites to receive treatment is an important step in achieving this goal. Current available tools for detection of malaria parasites are either expensive, lacking in sensitivity for asymptomatic carriers, or low in throughput. We investigated the sensitivity of an impedimetric biosensor targeting the malaria biomarker Plasmodium lactate dehydrogenase (pLDH). Following optimization of the detection protocol, sensor performance was tested using phosphate-buffered saline (PBS), and then saliva samples spiked with pLDH at various concentrations. The presence of pLDH was determined by analyzing the sensor electrical properties before and after sample application. Through comparing percentage changes in impedance magnitude, the sensors distinguished pLDH-spiked PBS from non-spiked PBS at concentrations as low as 250 pg/mL (p = 0.0008). Percentage changes in impedance magnitude from saliva spiked with 2.5 ng/mL pLDH trended higher than those from non-spiked saliva. These results suggest that these biosensors have the potential to detect concentrations of pLDH up to two logs lower than currently available best-practice diagnostic tools. Successful optimization of this sensor platform would enable more efficient diagnosis of asymptomatic carriers, who can be targeted for treatment, contributing to the elimination of malaria.