Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    On the use of switched linear controllers for stabilizability of implicit recursive equations
    Nesic, D (IEEE, 1998-01-01)
    Stabilizability of implicit recursive equations is investigated. These equations arise naturally in the context of output dead-beat control for systems described by NARMAX models. Due to non-uniqueness of the solutions of these equations a special kind of a constrained stabilizability problem is considered. We take a hybrid switching control approach in testing the existence of a locally stabilizing controller. A method for the design of a stabilizing switching controller is also presented.
  • Item
    Thumbnail Image
    Analysis of minimum phase properties for non-affine nonlinear systems
    Nesic, D ; Skafidas, E ; Mareels, IMY ; Evans, RJ (IEEE, 1997)
    A system can be termed non-minimum phase according to some definitions available in the literature and yet the same system may exhibit stable zero output constrained dynamics. We show that for non-affine nonlinear systems there may not exist a continuous control law which would keep the output identically equal to zero and for which the zero output constrained dynamics are stable, whereas a discontinuous controller which achieves this exists. We give conditions for existence and present a method for design of discontinuous switching controllers which yield stable zero dynamics. In this sense, the results of this paper enlarge the class of non-affine nonlinear systems that can be termed minimum-phase.
  • Item
    Thumbnail Image
    PV Controller Modification and its Impact on Assisting PV Penetration
    Mohanan, VAV ; Evans, RJ ; Mareels, I ; Kolluri, RR (ACM, 2020-06-12)
    Large-scale penetration of grid-following inverters into the electricity network presents various technical challenges to grid reliability. It is well-known that the ability of a grid to maintain a stable frequency is inhibited by adding traditional grid-tied photovoltaic (PV) generators. In this work, a detailed model of a simplified grid is presented, and it is shown that the proportion of PV generation and instability are positively correlated. The main instability phenomenon is captured by a Hopf Bifurcation in the field dynamics of the synchronous generator. Such a Hopf bifurcation severely constricts the feasible operating domain of the grid and may hinder normal operation. Modifying traditional grid-tied PV controllers and its impact on grid stability is assessed through small-signal, bifurcation and transient numerical analysis. Traditional PV controllers that are modified to virtual synchronous machine (VSM) type controllers show improvement in system damping. Unlike traditional grid-tied inverters, VSM inverters participate in critical modes of the synchronous generator (SG) and augment the operational domain of the SG+VSM system significantly, more importantly, almost eliminating the need for renewable energy curtailment. A case-study approach is used to present some key results on improvements in damping ratio, feasibility domain and transient stability. Finally, a feasibility domain curve is introduced and discussed in an aim to generalize the overall stability of any such system.
  • Item