Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    No Preview Available
    Zero-Error Feedback Capacity for Bounded Stabilization and Finite-State Additive Noise Channels
    Saberi, A ; Farokhi, F ; Nair, GN (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2022-10)
  • Item
    No Preview Available
    Bounded Estimation Over Finite-State Channels: Relating Topological Entropy and Zero-Error Capacity
    Saberi, A ; Farokhi, F ; Nair, GN (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2022-08)
  • Item
    No Preview Available
    Granger causality from quantized measurements
    Ahmadi, S ; Nair, GN ; Weyer, E (Elsevier BV, 2022-08-01)
  • Item
    Thumbnail Image
    On the Latency, Rate and Reliability Tradeoff in Wireless Networked Control Systems for IIoT
    Liu, W ; Nair, G ; Li, Y ; Nesic, D ; Vucetic, B ; Poor, HV (Institute of Electrical and Electronics Engineers (IEEE), 2020)
    Wireless networked control systems (WNCSs) provide a key enabling technique for Industry Internet of Things (IIoT). However, in the literature of WNCSs, most of the research focuses on the control perspective, and has considered oversimplified models of wireless communications which do not capture the key parameters of a practical wireless communication system, such as latency, data rate and reliability. In this paper, we focus on a WNCS, where a controller transmits quantized and encoded control codewords to a remote actuator through a wireless channel, and adopt a detailed model of the wireless communication system, which jointly considers the inter-related communication parameters. We derive the stability region of the WNCS. If and only if the tuple of the communication parameters lies in the region, the average cost function, i.e., a performance metric of the WNCS, is bounded. We further obtain a necessary and sufficient condition under which the stability region is n-bounded, where n is the control codeword blocklength. We also analyze the average cost function of the WNCS. Such analysis is non-trivial because the finite-bit control-signal quantizer introduces a non-linear and discontinuous quantization function which makes the performance analysis very difficult. We derive tight upper and lower bounds on the average cost function in terms of latency, data rate and reliability. Our analytical results provide important insights into the design of the optimal parameters to minimize the average cost within the stability region.
  • Item
    No Preview Available
  • Item
    Thumbnail Image
    Two extensions of topological feedback entropy
    Hagihara, R ; Nair, GN (SPRINGER LONDON LTD, 2013-12)
  • Item
    Thumbnail Image
    Intelligent Reference Curation for Visual Place Recognition via Bayesian Selective Fusion
    Molloy, TL ; Fischer, T ; Milford, MJ ; Nair, G (Institute of Electrical and Electronics Engineers (IEEE), 2020)
    A key challenge in visual place recognition (VPR) is recognizing places despite drastic visual appearance changes due to factors such as time of day, season, weather or lighting conditions. Numerous approaches based on deep-learnt image descriptors, sequence matching, domain translation, and probabilistic localization have had success in addressing this challenge, but most rely on the availability of carefully curated representative reference images of the possible places. In this paper, we propose a novel approach, dubbed Bayesian Selective Fusion, for actively selecting and fusing informative reference images to determine the best place match for a given query image. The selective element of our approach avoids the counterproductive fusion of every reference image and enables the dynamic selection of informative reference images in environments with changing visual conditions (such as indoors with flickering lights, outdoors during sunshowers or over the day-night cycle). The probabilistic element of our approach provides a means of fusing multiple reference images that accounts for their varying uncertainty via a novel training-free likelihood function for VPR. On difficult query images from two benchmark datasets, we demonstrate that our approach matches and exceeds the performance of several alternative fusion approaches along with state-of-the-art techniques that are provided with prior (unfair) knowledge of the best reference images. Our approach is well suited for longterm robot autonomy where dynamic visual environments are commonplace since it is training-free, descriptor-agnostic, and complements existing techniques such as sequence matching.
  • Item
    Thumbnail Image
    An Information Analysis of Iterative Algorithms for Network Utility Maximization and Strategic Games
    Alpcan, T ; Nekouei, E ; Nair, GN ; Evans, RJ (IEEE, 2019)
    A variety of resource allocation problems on networked systems, for example, those in cyber-physical systems or Internet-of-things applications, require distributed solution methods. Modern distributed algorithms usually require bandwidth-limited digital communication between the system and its users, who are often modeled as independent decision makers with individual preferences. This paper presents a quantitative information flow and knowledge gain analysis of decentralized iterative algorithms with bounded trajectories in the context of convex network utility maximization problems and strategic games with a unique Nash equilibrium solution. First, a novel generic framework is introduced to quantify knowledge gain in network resource allocation problems using entropy by taking into account priors in the solution space. Second, a general result is presented on the interplay between quantization of information and distributed algorithm performance both for linear and sublinear convergence. Third, information flow in distributed algorithms is studied and a lower bound is derived on the total amount of information exchanged for convergence under uniform quantization. The well-known primal-dual decomposition algorithm is used as an example to illustrate the results. Finally, convergence guarantees for distributed algorithms with estimation are investigated. This paper establishes specific links between information concepts and iterative algorithms in addition to building a foundation for integrating learning schemes into distributed optimization.
  • Item
    Thumbnail Image
    Performance Analysis of Gradient-Based Nash Seeking Algorithms Under Quantization
    Nekouei, E ; Nair, GN ; Alpcan, T (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016-12-01)
    This paper investigates the impact of quantized inter-agent communications on the asymptotic and transient behavior of gradient-based Nash-seeking algorithms in non-cooperative games. Using the information-theoretic notion of entropy power, we establish a universal lower bound on the asymptotic rate of exponential mean-square convergence to the Nash equilibrium (NE). This bound depends on the inter-agent data rate and the local behavior of the agents' utility functions, and is independent of the quantizer structure. Next, we study transient performance and derive an upper bound on the average time required to settle inside a specified ball around the NE, under uniform quantization. Furthermore, we establish an upper bound on the probability that agents' actions lie outside this ball, and show that this bound decays double-exponentially with time. Finally, we propose an adaptive quantization scheme that allows the gradient algorithm to converge to the NE despite quantized inter-agent communications.
  • Item
    Thumbnail Image
    Sample Complexity of Solving Non-Cooperative Games
    Nekouei, E ; Nair, GN ; Alpcan, T ; Evans, RJ (Institute of Electrical and Electronics Engineers, 2020-02-01)
    This paper studies the complexity of solving two classes of non-cooperative games in a distributed manner, in which the players communicate with a set of system nodes over noisy communication channels. The complexity of solving each game class is defined as the minimum number of iterations required to find a Nash equilibrium (NE) of any game in that class with ∈ accuracy. First, we consider the class G of all N-player non-cooperative games with a continuous action space that admit at least one NE. Using information-theoretic inequalities, a lower bound on the complexity of solving G is derived which depends on the Kolmogorov 2∈-capacity of the constraint set and the total capacity of the communication channels. Our results indicate that the game class G can be solved at most exponentially fast. We next consider the class of all N-player non-cooperative games with at least one NE such that the players' utility functions satisfy a certain (differential) constraint. We derive lower bounds on the complexity of solving this game class under both Gaussian and non-Gaussian noise models. Finally, we derive upper and lower bounds on the sample complexity of a class of quadratic games. It is shown that the complexity of solving this game class scales according to Θ (1/∈ 2 ) where € is the accuracy parameter.