Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Utility of Pan-Family Assays for Rapid Viral Screening: Reducing Delays in Public Health Responses During Pandemics
    Erlichster, M ; Chana, G ; Zantomio, D ; Goudey, B ; Skafidas, E ( 2020)

    Summary

    Background

    The SARS-CoV-2 pandemic has highlighted deficiencies in the testing capacity of many developed countries during the early stages of emerging pandemics. Here we describe the potential for pan-family viral assays to improve early accessibility of large-scale nucleic acid testing.

    Methods

    Coronaviruses and SARS-CoV-2 were used as a case-study for investigating the utility of pan-family viral assays during the early stages of a novel pandemic. Specificity of a pan-coronavirus (Pan-CoV) assay for viral detection was assessed using the frequency of common human coronavirus (HCoV) species in key populations. A reported Pan-CoV assay was assessed to determine sensitivity to SARS-CoV-2 and 59 other coronavirus species. The resilience of the primer target regions of this assay to mutation was assessed in 8893 high quality SARS-CoV-2 genomes to predict ongoing utility during pandemic progression.

    Findings

    Due to infection with common HCoV species, a Pan-CoV assay would return a false positive for as few as 1% of asymptomatic adults, but up to 30% of immunocompromised patients displaying symptoms of respiratory disease. Two of the four reported pan-coronavirus assays would have identified SARS-CoV-2 and we demonstrate that with small adjustments to the primers, these assays can accommodate novel variation observed in animal coronaviruses. The assay target region of one well established Pan-CoV assay is highly resistant to mutation compared to regions targeted by other widely applied SARS-CoV-2 RT-PCR assays.

    Interpretation

    Pan-family assays have the potential to greatly assist management of emerging public health emergencies through prioritization of high-resolution testing or isolation measures, despite limitations in test specificity due to cross-reactivity with common pathogens. Targeting highly conserved genomic regions make pan-family assays robust and resilient to mutation of a given virus. This approach may be applicable to other viral families and has utility as part of a strategic stockpile of tests maintained to better contain spread of novel diseases prior to the widespread availability of specific assays.
  • Item
    Thumbnail Image
    Detection of voluntary dehydration in paediatric populations using non-invasive point-of-care saliva and urine testing
    Faidah, N ; Soraya, G ; Erlichster, M ; Natzir, R ; Chana, G ; Skafidas, E ; Hardjo, M ; Ganda, IJ ; Bahar, B (WILEY, 2021-06)
    AIM: Voluntary dehydration, or lack of fluid intake despite water availability, is common in otherwise healthy children, and can lead to adverse effects. Most dehydration biomarkers are impractical for routine assessment in paediatric populations. This study aimed to assess two non-invasive hydration assessment tools, urine specific gravity (USG ) and a novel point-of-care (POC) salivary osmolarity (SOSM) sensor, in healthy children. METHODS: Volunteers were tested by colorimetric USG and a handheld SOSM system. Observed values were compared against previous studies to determine hydration status, as was the concordance between parameters. RESULTS: At the common USG threshold of 1.020, 42.4% of the 139 healthy children were dehydrated. The same prevalence was found using the 70-mOSM cut-off value. Comparative analysis of SOSM at varying USG thresholds demonstrated significantly higher SOSM in dehydrated children with a USG  ≥ 1.030 (P = 0.002). CONCLUSION: At the USG threshold of 1.020 and SOSM threshold of 70 mOSM, 42.4% of healthy children were found to be voluntarily dehydrated. Significantly higher SOSM was observed in dehydrated children (USG  ≥ 1.030). As the first study on the utility of POC SOSM measurements for detecting dehydration, these results provide a foundation for future POC characterisation of SOSM in other populations and clinical contexts.
  • Item
    Thumbnail Image
    Predicting the diagnosis of autism spectrum disorder using gene pathway analysis
    Skafidas, E ; Testa, R ; Zantomio, D ; Chana, G ; Everall, IP ; Pantelis, C (NATURE PUBLISHING GROUP, 2014-04)
    Autism spectrum disorder (ASD) depends on a clinical interview with no biomarkers to aid diagnosis. The current investigation interrogated single-nucleotide polymorphisms (SNPs) of individuals with ASD from the Autism Genetic Resource Exchange (AGRE) database. SNPs were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG)-derived pathways to identify affected cellular processes and develop a diagnostic test. This test was then applied to two independent samples from the Simons Foundation Autism Research Initiative (SFARI) and Wellcome Trust 1958 normal birth cohort (WTBC) for validation. Using AGRE SNP data from a Central European (CEU) cohort, we created a genetic diagnostic classifier consisting of 237 SNPs in 146 genes that correctly predicted ASD diagnosis in 85.6% of CEU cases. This classifier also predicted 84.3% of cases in an ethnically related Tuscan cohort; however, prediction was less accurate (56.4%) in a genetically dissimilar Han Chinese cohort (HAN). Eight SNPs in three genes (KCNMB4, GNAO1, GRM5) had the largest effect in the classifier with some acting as vulnerability SNPs, whereas others were protective. Prediction accuracy diminished as the number of SNPs analyzed in the model was decreased. Our diagnostic classifier correctly predicted ASD diagnosis with an accuracy of 71.7% in CEU individuals from the SFARI (ASD) and WTBC (controls) validation data sets. In conclusion, we have developed an accurate diagnostic test for a genetically homogeneous group to aid in early detection of ASD. While SNPs differ across ethnic groups, our pathway approach identified cellular processes common to ASD across ethnicities. Our results have wide implications for detection, intervention and prevention of ASD.
  • Item
    Thumbnail Image
    A Label-Free, Quantitative Fecal Hemoglobin Detection Platform for Colorectal Cancer Screening
    Soraya, GV ; Nguyen, TC ; Abeyrathne, CD ; Huynh, DH ; Chan, J ; Nguyen, PD ; Nasr, B ; Chana, G ; Kwan, P ; Skafidas, E (MDPI, 2017-06)
    The early detection of colorectal cancer is vital for disease management and patient survival. Fecal hemoglobin detection is a widely-adopted method for screening and early diagnosis. Fecal Immunochemical Test (FIT) is favored over the older generation chemical based Fecal Occult Blood Test (FOBT) as it does not require dietary or drug restrictions, and is specific to human blood from the lower digestive tract. To date, no quantitative FIT platforms are available for use in the point-of-care setting. Here, we report proof of principle data of a novel low cost quantitative fecal immunochemical-based biosensor platform that may be further developed into a point-of-care test in low-resource settings. The label-free prototype has a lower limit of detection (LOD) of 10 µg hemoglobin per gram (Hb/g) of feces, comparable to that of conventional laboratory based quantitative FIT diagnostic systems.
  • Item
    Thumbnail Image
    A Silk Fibroin Bio-Transient Solution Processable Memristor
    Yong, J ; Hassan, B ; Liang, Y ; Ganesan, K ; Rajasekharan, R ; Evans, R ; Egan, G ; Kavehei, O ; Li, J ; Chana, G ; Nasr, B ; Skafidas, E (NATURE PUBLISHING GROUP, 2017-11-07)
    Today's electronic devices are fabricated using highly toxic materials and processes which limits their applications in environmental sensing applications and mandates complex encapsulation methods in biological and medical applications. This paper proposes a fully resorbable high density bio-compatible and environmentally friendly solution processable memristive crossbar arrays using silk fibroin protein which demonstrated bipolar resistive switching ratio of 104 and possesses programmable device lifetime characteristics before the device gracefully bio-degrades, minimizing impact to environment or to the implanted host. Lactate dehydrogenase assays revealed no cytotoxicity on direct exposure to the fabricated device and support their environmentally friendly and biocompatible claims. Moreover, the correlation between the oxidation state of the cations and their tendency in forming conductive filaments with respect to different active electrode materials has been investigated. The experimental results and the numerical model based on electro-thermal effect shows a tight correspondence in predicting the memristive switching process with various combinations of electrodes which provides insight into the morphological changes of conductive filaments in the silk fibroin films.
  • Item
    Thumbnail Image
    Graphene foam as a biocompatible scaffold for culturing human neurons
    D'Abaco, GM ; Mattei, C ; Nasr, BK ; Hudson, EJ ; Alshawaf, AJ ; Chana, G ; Everall, IP ; Nayagam, B ; Dottori, M ; Skafidas, E (ROYAL SOC, 2018-03)
    In this study, we explore the use of electrically active graphene foam as a scaffold for the culture of human-derived neurons. Human embryonic stem cell (hESC)-derived cortical neurons fated as either glutamatergic or GABAergic neuronal phenotypes were cultured on graphene foam. We show that graphene foam is biocompatible for the culture of human neurons, capable of supporting cell viability and differentiation of hESC-derived cortical neurons. Based on the findings, we propose that graphene foam represents a suitable scaffold for engineering neuronal tissue and warrants further investigation as a model for understanding neuronal maturation, function and circuit formation.
  • Item
    Thumbnail Image
    Self-Organized Nanostructure Modified Microelectrode for Sensitive Electrochemical Glutamate Detection in Stem Cells-Derived Brain Organoids
    Nasr, B ; Chatterton, R ; Yong, JHM ; Jamshidi, P ; D'Abaco, GM ; Bjorksten, AR ; Kavehei, O ; Chana, G ; Dottori, M ; Skafidas, E (MDPI, 2018-03)
    Neurons release neurotransmitters such as glutamate to communicate with each other and to coordinate brain functioning. As increased glutamate release is indicative of neuronal maturation and activity, a system that can measure glutamate levels over time within the same tissue and/or culture system is highly advantageous for neurodevelopmental investigation. To address such challenges, we develop for the first time a convenient method to realize functionalized borosilicate glass capillaries with nanostructured texture as an electrochemical biosensor to detect glutamate release from cerebral organoids generated from human embryonic stem cells (hESC) that mimic various brain regions. The biosensor shows a clear catalytic activity toward the oxidation of glutamate with a sensitivity of 93 ± 9.5 nA·µM-1·cm-2. It was found that the enzyme-modified microelectrodes can detect glutamate in a wide linear range from 5 µM to 0.5 mM with a limit of detection (LOD) down to 5.6 ± 0.2 µM. Measurements were performed within the organoids at different time points and consistent results were obtained. This data demonstrates the reliability of the biosensor as well as its usefulness in measuring glutamate levels across time within the same culture system.
  • Item
    Thumbnail Image
    No preliminary evidence of differences in astrocyte density within the white matter of the dorsolateral prefrontal cortex in autism
    Lee, TT ; Skafidas, E ; Dottori, M ; Zantomio, D ; Pantelis, C ; Everall, I ; Chana, G (BMC, 2017-12-08)
    BACKGROUND: While evidence for white matter and astrocytic abnormalities exist in autism, a detailed investigation of astrocytes has not been conducted. Such an investigation is further warranted by an increasing role for neuroinflammation in autism pathogenesis, with astrocytes being key players in this process. We present the first study of astrocyte density and morphology within the white matter of the dorsolateral prefrontal cortex (DLPFC) in individuals with autism. METHODS: DLPFC formalin-fixed sections containing white matter from individuals with autism (n = 8, age = 4-51 years) and age-matched controls (n = 7, age = 4-46 years) were immunostained for glial fibrillary acidic protein (GFAP). Density of astrocytes and other glia were estimated via the optical fractionator, astrocyte somal size estimated via the nucleator, and astrocyte process length via the spaceballs probe. RESULTS: We found no evidence for alteration in astrocyte density within DLPFC white matter of individuals with autism versus controls, together with no differences in astrocyte somal size and process length. CONCLUSION: Our results suggest that astrocyte abnormalities within the white matter in the DLPFC in autism may be less pronounced than previously thought. However, astrocytic dysregulation may still exist in autism, even in the absence of gross morphological changes. Our lack of evidence for astrocyte abnormalities could have been confounded to an extent by having a small sample size and wide age range, with pathological features potentially restricted to early stages of autism. Nonetheless, future investigations would benefit from assessing functional markers of astrocytes in light of the underlying pathophysiology of autism.
  • Item
    No Preview Available
    Pan-Family Assays for Rapid Viral Screening: Reducing Delays in Public Health Responses During Pandemics
    Erlichster, M ; Chana, G ; Zantomio, D ; Goudey, B ; Skafidas, E (OXFORD UNIV PRESS INC, 2021-11-01)
    BACKGROUND: Coronavirus disease 2019 has highlighted deficiencies in the testing capacity of many developed countries during the early stages of pandemics. Here we describe a strategy using pan-family viral assays to improve early accessibility of large-scale nucleic acid testing. METHODS: Coronaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were used as a case study for assessing utility of pan-family viral assays during the early stages of a novel pandemic. Specificity of a pan-coronavirus (Pan-CoV) assay for a novel pathogen was assessed using the frequency of common human coronavirus (HCoV) species in key populations. A reported Pan-CoV assay was assessed to determine sensitivity to 60 reference coronaviruses, including SARS-CoV-2. The resilience of the primer target regions of this assay to mutation was assessed in 8893 high-quality SARS-CoV-2 genomes to predict ongoing utility during pandemic progression. RESULTS: Because of common HCoV species, a Pan-CoV assay would return false positives for as few as 1% of asymptomatic adults, but up to 30% of immunocompromised patients with respiratory disease. One-half of reported Pan-CoV assays identify SARS-CoV-2 and with small adjustments can accommodate diverse variation observed in animal coronaviruses. The target region of 1 well-established Pan-CoV assay is highly resistant to mutation compared to species-specific SARS-CoV-2 reverse transcriptase-polymerase chain reaction assays. CONCLUSIONS: Despite cross-reactivity with common pathogens, pan-family assays may greatly assist management of emerging pandemics through prioritization of high-resolution testing or isolation measures. Targeting highly conserved genomic regions make pan-family assays robust and resilient to mutation. A strategic stockpile of pan-family assays may improve containment of novel diseases before the availability of species-specific assays.
  • Item
    Thumbnail Image
    Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells
    Alshawaf, AJ ; Viventi, S ; Qiu, W ; D'Abaco, G ; Nayagam, B ; Erlichster, M ; Chana, G ; Everall, I ; Ivanusic, J ; Skafidas, E ; Dottori, M (NATURE PUBLISHING GROUP, 2018-01-12)
    The dorsal root ganglia (DRG) consist of a multitude of sensory neuronal subtypes that function to relay sensory stimuli, including temperature, pressure, pain and position to the central nervous system. Our knowledge of DRG sensory neurons have been predominantly driven by animal studies and considerably less is known about the human DRG. Human embryonic stem cells (hESC) are valuable resource to help close this gap. Our previous studies reported an efficient system for deriving neural crest and DRG sensory neurons from hESC. Here we show that this differentiation system gives rise to heterogeneous populations of sensory neuronal subtypes as demonstrated by phenotypic and functional analyses. Furthermore, using microelectrode arrays the maturation rate of the hESC-derived sensory neuronal cultures was monitored over 8 weeks in culture, showing their spontaneous firing activities starting at about 12 days post-differentiation and reaching maximum firing at about 6 weeks. These studies are highly valuable for developing an in vitro platform to study the diversity of sensory neuronal subtypes found within the human DRG.