Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
  • Item
  • Item
    No Preview Available
    Co-design of Control Strategy and Storage Size for a Water Distribution System
    Wang, Y ; Weyer, E ; Manzie, C ; Simpson, AR (IEEE, 2022-01-01)
    The design and operation of water distribution systems (WDSs) are two interrelated tasks that both impact the overall cost of the systems. The traditional approach is to first design the system and then develop a control strategy for the specified infrastructure. However, this is suboptimal in that the controlled system may hit operating constraints arising from inadequate design, or the capital cost may be excessive due to conservative design processes. The challenge of designing both the infrastructure and control strategy simultaneously is amplified by the demand profiles and energy prices being stochastic. In this paper, we investigate stochastic co-design optimization problems for simultaneously optimizing the tank size and parameters of a pumping strategy. We employ Markov chain theory to establish tractable co-design optimization problems. We show several simulation results to demonstrate the efficacy of the proposed approach.
  • Item
    No Preview Available
    Improved Pump Setpoint Selection Using a Calibrated Hydraulic Model of a High-Pressure Irrigation System
    Wang, Y ; Zhao, Q ; Wu, W ; Willis, A ; Simpson, AR ; Weyer, E (Elsevier, 2022-01-01)
    This paper presents a case study of the operational management of the Robinvale high-pressure piped irrigation water delivery system (RVHPS) in Australia. Based on datasets available, improved pump setpoint selection using a calibrated hydraulic model is investigated. The first step was to implement pre-processing of measured flow and pressure data to identify errors in the data and possible faulty sensors. An EPANET hydraulic simulation model was updated with calibrated pipe roughness height values by using the processed pressure and flow data. Then, new pump setpoints were selected using the calibrated model given the actual measured demands such that the pressures in the network were minimized subject to required customer service standards. Based on a two-day simulation, it was estimated that 4.7% savings in pumping energy cost as well as 4.7% reduction in greenhouse gas emissions can be achieved by applying the new pump setpoints.