Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    On the use of switched linear controllers for stabilizability of implicit recursive equations
    Nesic, D (IEEE, 1998-01-01)
    Stabilizability of implicit recursive equations is investigated. These equations arise naturally in the context of output dead-beat control for systems described by NARMAX models. Due to non-uniqueness of the solutions of these equations a special kind of a constrained stabilizability problem is considered. We take a hybrid switching control approach in testing the existence of a locally stabilizing controller. A method for the design of a stabilizing switching controller is also presented.
  • Item
    Thumbnail Image
    Stability of high order polynomial dynamics and minimum phase discrete-time systems
    Nešić, D ; Mareels, IMY (IEEE, 1997-04-08)
    The definition of a minimum phase nonlinear system, as usually found in the literature, is not general enough to be used for some classes of systems. The nonlinearity may yield a variety of different behaviors that are not addressed and analyzed in the literature. We provide a constructive method to test several different minimum phase properties for classes of explicit and implicit discrete-time polynomial systems. The method is based on a symbolic computation package called QEPCAD. Our results can also be interpreted as a constructive approach to stability and stabilizability of explicit and implicit discrete-time polynomial systems.
  • Item
    Thumbnail Image
    An output dead beat controllability test for a class of odd polynomial systems
    Nešić, D ; Mareels, IMY (IEEE, 1997-04-08)
    An output dead beat controllability test that stops after finitely many rational operations is presented for a class of odd polynomial systems. The test is based on the Gröbner basis method but it needs to be facilitated in general with the QEPCAD symbolic computation package. Geometric properties due to which output dead beat controllability may be lost are identified and analysed. The computational requirements are smaller when compared with the known output dead beat controllability tests.
  • Item
    Thumbnail Image
    On some triangular structures and the state dead-beat problem for polynomial systems
    Nesic, D ; Mareels, IMY (I E E E, 1997)
    QEPCAD based controllability testing for polynomial discrete-time systems is computationally very expensive and it may lead to non-terminating algorithms. We identify the structure of a large class of polynomial discrete-time systems, which reduces the computational cost associated with the dead-beat controllability test and which may lead to finite time controllability tests. For this purpose we use QEPCAD and the Grobner basis method. The structure which we identify encompases several classes of systems for which dead-beat controllability tests exist.
  • Item
    Thumbnail Image
    Analysis of minimum phase properties for non-affine nonlinear systems
    Nesic, D ; Skafidas, E ; Mareels, IMY ; Evans, RJ (IEEE, 1997)
    A system can be termed non-minimum phase according to some definitions available in the literature and yet the same system may exhibit stable zero output constrained dynamics. We show that for non-affine nonlinear systems there may not exist a continuous control law which would keep the output identically equal to zero and for which the zero output constrained dynamics are stable, whereas a discontinuous controller which achieves this exists. We give conditions for existence and present a method for design of discontinuous switching controllers which yield stable zero dynamics. In this sense, the results of this paper enlarge the class of non-affine nonlinear systems that can be termed minimum-phase.
  • Item
    Thumbnail Image
    Software for Control System Analysis and Design: Symbol Manipulation
    Nesic, D ; Mareels, IMY ; Glad, ST ; Jirstrand, M (John Wiley & Sons, Inc., 1999)
    Abstract The sections in this article are The Gröbner Basis Method Differential Algebra In Control Quantifier Elimination
  • Item
    Thumbnail Image
    Minimum phase properties for input nonaffine nonlinear systems
    Nesic, D ; Skafidas, E ; Mareels, IMY ; Evans, RJ (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 1999-04)
    For input nonaffine nonlinear control systems, the minimum phase property of the system in general depends on the control law. Switching or discontinuous controllers may offer advantages in this context. In particular, there may not exist a continuous control law which would keep the output identically equal to zero and for which the zero output constrained dynamics are locally stable, whereas a discontinuous controller which achieves this exists. For single-input/single-output input nonaffine nonlinear systems we give sufficient conditions for existence and present a method for the design of discontinuous switching controllers which yield locally stable zero dynamics.
  • Item
    Thumbnail Image
    Controllability of structured polynomial systems
    Nesic, D ; Mareels, IMY (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 1999-04)
    Two algorithms, based on the Grobner basis method, which facilitate the controllability analysis for a class of polynomial systems are presented. The authors combine these algorithms with some recent results on output dead-beat controllability in order to obtain sufficient, as well as necessary, conditions for complete and state dead-beat controllability for a surprisingly large class of polynomial systems. Our results are generically applicable to the class of polynomial systems in strict feedback form.
  • Item
  • Item
    Thumbnail Image
    Stabilisability and stability for explicit and implicit polynomial systems: A symbolic computation approach
    Nesic, D ; Mareels, IMY (SPRINGER-VERLAG LONDON LTD, 1999)
    Stabilisability and stability for a large class of discrete-time polynomial systems can be decided using symbolic computation packages for quantifier elimination in the first order theory of real closed fields. A large class of constraints on states of the system and control inputs can be treated in the same way. Stability of a system can be checked by constructing a Lyapunov function, which is assumed to belong to a class of polynomial positive definite functions. Moreover, we show that stability/stabilisability can be decided directly from the ε-δ definition.