Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 398
  • Item
    Thumbnail Image
    Energy Efficient Time Synchronization in WSN for Critical Infrastructure Monitoring
    Rao, AS ; Gubbi, J ; Tuan, N ; Nguyen, J ; Palaniswami, M ; Wyld, DC ; Wozniak, M ; Chaki, N ; Meghanathan, N ; Nagamalai, D (SPRINGER-VERLAG BERLIN, 2011-01-01)
    Wireless Sensor Networks (WSN) based Structural Health Monitoring (SHM) is becoming popular in analyzing the life of critical infrastructure such as bridges on a continuous basis. For most of the applications, data aggregation requires high sampling rate. A need for accurate time synchronization in the order of 0.6 − 9 μs every few minutes is necessary for data collection and analysis. Two-stage energy-efficient time synchronization is proposed in this paper. Firstly, the network is divided into clusters and a head node is elected using Low-Energy Adaptive Clustering Hierarchy based algorithm. Later, multiple packets of different lengths are used to estimate the delay between the elected head and the entire network hierarchically at different levels. Algorithmic scheme limits error to 3-hop worst case synchronization error. Unlike earlier energy-efficient time synchronization schemes, the achieved results increase the lifetime of the network.
  • Item
    Thumbnail Image
    A robust algorithm for foreground extraction in crowded scenes
    Rao, AS ; Gubbi, J ; Marusic, S ; Palaniswami, M (IEEE, 2012-12-01)
    The widespread availability of surveillance cameras and digital technology has improved video based security measures in public places. Surveillance systems have been assisting officials both in civil and military applications. It is helping to identify unlawful activities by means of uninterrupted transmission of surveillance videos. By this, the system is adding extraneous onus on to the already existing workload of security officers. Instead, if the surveillance system is intelligent and efficient enough to identify the events of interest and alert the officers, it alleviates the burden of continuous monitoring. In other words, our existing surveillance systems are lacking to identify the objects that are dissimilar in shape, size, and color especially in identifying human beings (nonrigid motions). Global illumination changes, frequent occurrences of shadows, insufficient lighting conditions, unique properties of slow and fast moving objects, unforeseen appearance of objects and its behavior, availability of system memory, etc., may be ascribed to the limitations of existing systems. In this paper, we present a filtering technique to extract foreground information, which uses RGB component and chrominance channels to neutralize the effects of nonuniform illumination, remove shadows, and detect both slow-moving and distant objects.
  • Item
    Thumbnail Image
    A Pilot Study of Urban Noise Monitoring Architecture Using Wireless Sensor Networks
    Gubbi, J ; Marusic, S ; Rao, AS ; Law, YW ; Palaniswami, M (IEEE, 2013-01-01)
    Internet of Things (IoT) is denned as interconnection of sensing and actuating devices providing the ability to share information across platforms through a unified framework, developing a common operating picture for enabling innovative applications. As the world urban population is set to cross unprecedented levels, adequate provision of services and infrastructure poses huge challenges. The emerging IoT that offers ubiquitous sensing and actuation can be utilized effectively for managing urban environments. In this paper, a new architecture for noise monitoring in urban environments is proposed. The architecture is scalable and applicable to other sensors required for city management. In addition to the architecture, a new noise monitoring hardware platform is reported and visualization of the data is presented. An emerging citizen centric participatory sensing is discussed in the context of noise monitoring.
  • Item
    Thumbnail Image
    A Pilot Study on the use of Accelerometer Sensors for Monitoring Post Acute Stroke Patients
    Gubbi, J ; Kumar, D ; Rao, AS ; Yan, B ; Palaniswami, M (IEEE, 2013)
    The high incidence of stroke has raised a major concern among health professionals in recent years. Concerted efforts from medical and engineering communities are being exercised to tackle the problem at its early stage. In this direction, a pilot study to analyze and detect the affected arm of the stroke patient based on hand movements is presented. The premise is that the correlation of magnitude of the activities of the two arms vary significantly for stroke patients from controls. Further, the cross-correlation of right and left arms for three axes are differentiable for patients and controls. A total of 22 subjects (15 patients and 7 controls) were included in this study. An overall accuracy of 95.45% was obtained with sensitivity of 1 and specificity of 0.86 using correlation based method.
  • Item
    Thumbnail Image
    Crowd Density Estimation Based on Optical Flow and Hierarchical Clustering
    Rao, AS ; Gubbi, J ; Marusic, S ; Stanley, P ; Palaniswami, M (IEEE, 2013-01-01)
    Crowd density estimation has gained much attention from researchers recently due to availability of low cost cameras and communication bandwidth. In video surveillance applications, counting people and creating a temporal profile is of high interest. Surveillance systems face difficulties in detecting motion from the scene due to varying environmental conditions and occlusion. Instead of detecting and tracking individual person, density estimation is an approximate method to count people. The approximation is often more accurate than individual tracking in occluded scenarios. In this work, a new technique to estimate crowd density is proposed. A block-based dense optical flow with spatial and temporal filtering is used to obtain velocities in order to infer the locations of objects in crowded scenarios. Furthermore, a hierarchical clustering is employed to cluster the objects based on Euclidean distance metric. The Cophenetic correlation coefficient for the clusters highlighted the fact that our preprocessing and localizing of object movements form hierarchical clusters that are structured well with reasonable accuracy without temporal post-processing.
  • Item
    Thumbnail Image
    Determination of Object Directions Using Optical Flow for Crowd Monitoring
    Rao, AS ; Gubbi, J ; Marusic, S ; Maher, A ; Palaniswami, M ; Bebis, G ; Boyle, R ; Parvin, B ; Koracin, D ; Li, B ; Porikli, F ; Zordan, V ; Klosowski, J ; Coquillart, S ; Luo, X ; Chen, M ; Gotz, D (SPRINGER-VERLAG BERLIN, 2013-01-01)
    Determination of object direction in a multi-camera tracking system is critical. The absence of object direction from other cameras pose challenges if the object is along the optical axis. The problem of determining object direction worsens further if the cameras in the existing infrastructure are improperly placed and are uncontrollable. To determine the direction of an object in such situations, three methods based on optical flow (OF) are presented. The first method uses centroids of optical flow vector magnitudes and Kalman filter for tracking and is suitable for less crowded scenarios. The second method uses geometric moments to evaluate the flow vector distribution and to ascertain the direction in case of crowded scenarios by partitioning the scene and then applying moments to individual partitions independently. The third method is appropriate for small-sized objects near vanishing points where global object motion is less. During surveillance, whether multi-object, single-object or crowded scenarios, the aforementioned methods are applicable accordingly. The results show that the object directions can be accurately inferred from three methods for different scenarios.
  • Item
    Thumbnail Image
    Data Monitoring Sensor Network for Big Net Research Testbed
    Rao, AS ; Izadi, D ; Tellis, RF ; Ekanayake, SW ; Pathirana, PN ; Marusic, S ; Palaniswami, M ; Gubbi, J ; Law, YW (IEEE, 2009-01-01)
    Equipped with recent advances in electronics and communication, wireless sensor networks gained a rapid development to provide reliable information with higher Quality of Service (QoS) at lower costs. This paper presents a real-time tracking system developed as a part of the ISSNIP BigNet Testbed project. Here a GPS receiver was used to acquire position information of mobile nodes and GSM technology was used as the data communication media. Moreover, Google map based data visualization software was developed to locate the mobile nodes via Internet. This system can be used to accommodate various sensors, such as temperature, pressure, pH etc., and monitor the status of the nodes.
  • Item
    Thumbnail Image
    Explicit Lyapunov functions for stability and performance characterizations of FOREs connected to an integrator
    Zaccarian, L ; Nesic, D ; Teel, AR (IEEE, 2006)
    In this paper we provide explicit Lyapunov functions that prove that a First Order Reset Element (FORE) in negative feedback interconnection with an integrator is exponentially stable for any, positive or negative, value of the pole of the FORE. The Lyapunov functions also allow to establish finite gain L2 stability from a disturbance input acting at the input of the plant to the plant output. L2 stability is established by giving a bound on the corresponding L2 gains. The framework used for the characterization of the system dynamics and for the stability and performance analysis corresponds to the ideas first proposed in (Nesic et al. IFAC 2005) and (Zaccarian et al. ACC 2005).
  • Item
    Thumbnail Image
    Set-point stabilization of SISO linear systems using First Order Reset Elements
    Zaccarian, L ; Nesic, D ; Teel, AR (IEEE, 2007-01-01)
    In this paper we further develop on a novel representation of first order reset elements (FORE) control systems for SISO plants. We study here the problem of guaranteeing asymptotic tracking of constant references for general plants, which may or may not contain an integrator (namely, an internal model of the constant reference signal). We propose a generalization of the FORE which allows to guarantee asymptotic tracking of constant references when the plant parameters are perfectly known. Robustness of the scheme follows from the L infin stability properties of the FORE control schemes. The proposed approach is successfully illustrated on a simulation example.
  • Item
    Thumbnail Image
    Electrical Stimulation of Neural Tissue Modeled as a Cellular Composite: Point Source Electrode in an Isotropic Tissue
    Monfared, O ; Nesic, D ; Freestone, DR ; Grayden, DB ; Tahayori, B ; Meffin, H (IEEE, 2014)
    Standard volume conductor models of neural electrical stimulation assume that the electrical properties of the tissue are well described by a conductivity that is smooth and homogeneous at a microscopic scale. However, neural tissue is composed of tightly packed cells whose membranes have markedly different electrical properties to either the intra- or extracellular space. Consequently, the electrical properties of tissue are highly heterogeneous at the microscopic scale: a fact not accounted for in standard volume conductor models. Here we apply a recently developed framework for volume conductor models that accounts for the cellular composition of tissue. We consider the case of a point source electrode in tissue comprised of neural fibers crossing each other equally in all directions. We derive the tissue admittivity (that replaces the standard tissue conductivity) from single cell properties, and then calculate the extracellular potential. Our findings indicate that the cellular composition of tissue affects the spatiotemporal profile of the extracellular potential. In particular, the full solution asymptotically approaches a near-field limit close to the electrode and a far-field limit far from the electrode. The near-field and far-field approximations are solutions to standard volume conductor models, but differ from each other by nearly an order or magnitude. Consequently the full solution is expected to provide a more accurate estimate of electrical potentials over the full range of electrode-neurite separations.