Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 44
  • Item
    No Preview Available
    Mid-infrared spectral reconstruction with dielectric metasurfaces and dictionary learning
    Russell, BJ ; Cadusch, JJ ; Meng, J ; Wen, D ; Crozier, KB (Optica Publishing Group, 2022-05-15)
    Mid-infrared (MIR) spectroscopy has numerous industrial applications and is usually performed with Fourier-transform infrared (FTIR) spectrometers. While these work well for many purposes, there is currently much interest in alternative approaches that are smaller and lighter, i.e., MIR microspectrometers. Here we investigate all-dielectric metasurfaces as spectral filters for MIR microspectrometers. Two metasurface types are studied. For the first, we design, fabricate, and test a metasurface with a narrow and angularly tunable transmission stop band. We use it to reconstruct the transmission spectra of various materials. The second metasurface, investigated theoretically, possesses narrow passband features via symmetry-protected bound states in the continuum.
  • Item
    No Preview Available
    Genetic optimization of mid-infrared filters for a machine learning chemical classifier.
    Tan, H ; Cadusch, JJ ; Meng, J ; Crozier, KB (Optica Publishing Group, 2022-05-23)
    Miniaturized mid-infrared spectrometers present opportunities for applications that range from health monitoring to agriculture. One approach combines arrays of spectral filters with infrared photodetectors, called filter-array detector-array (FADA) microspectrometers. A paper recently reported a FADA microspectrometer in tandem with machine learning for chemical identification. In that work, a FADA microspectrometer with 20 filters was assembled and tested. The filters were band-pass, or band-stop designs that evenly spanned the microspectrometer's operating wavelength range. However, given that a machine learning classifier can be trained on an arbitrary filter basis, it is not apparent that evenly spaced filters are optimal. Here, through simulations with noise, we use a genetic algorithm to optimize six bandpass filters to best identify liquid and gaseous chemicals. We report that the classifiers trained with the optimized filter sets outperform those trained with evenly spaced filter sets and those handpicked to target the absorption bands of the chemicals investigated.
  • Item
    Thumbnail Image
    Direct Assembly of Large Area Nanoparticle Arrays
    Zhang, H ; Cadusch, J ; Kinnear, C ; James, T ; Roberts, A ; Mulvaney, P (AMER CHEMICAL SOC, 2018-08)
    A major goal of nanotechnology is the assembly of nanoscale building blocks into functional optical, electrical, or chemical devices. Many of these applications depend on an ability to optically or electrically address single nanoparticles. However, positioning large numbers of single nanocrystals with nanometer precision on a substrate for integration into solid-state devices remains a fundamental roadblock. Here, we report fast, scalable assembly of thousands of single nanoparticles using electrophoretic deposition. We demonstrate that gold nanospheres down to 30 nm in size and gold nanorods <100 nm in length can be assembled into predefined patterns on transparent conductive substrates within a few seconds. We find that rod orientation can be preserved during deposition. As proof of high fidelity scale-up, we have created centimeter scale patterns comprising more than 1 million gold nanorods.
  • Item
    Thumbnail Image
    Visible to Short-Wave Infrared Photodetectors Based on ZrGeTe4 van der Waals Materials
    Yan, W ; Johnson, BC ; Balendhran, S ; Cadusch, J ; Yan, D ; Michel, JI ; Wang, S ; Zheng, T ; Crozier, K ; Bullock, J (AMER CHEMICAL SOC, 2021-09-29)
    The self-terminated, layered structure of van der Waals materials introduces fundamental advantages for infrared (IR) optoelectronic devices. These are mainly associated with the potential for low noise while maintaining high internal quantum efficiency when reducing IR absorber thicknesses. In this study, we introduce a new van der Waals material candidate, zirconium germanium telluride (ZrGeTe4), to a growing family of promising IR van der Waals materials. We find the bulk form ZrGeTe4 has an indirect band edge around ∼0.5 eV, in close agreement with previous theoretical predictions. This material is found to be stable up to 140 °C and shows minimal compositional variation even after >30 days storage in humid air. We demonstrate simple proof-of-concept broad spectrum photodetectors with responsivities above 0.1 AW-1 across both the visible and short-wave infrared wavelengths. This corresponds to a specific detectivity of ∼109 cm Hz1/2 W-1 at λ = 1.4 μm at room temperature. These devices show a linear photoresponse vs illumination intensity relationship over ∼4 orders of magnitude, and fast rise/fall times of ∼50 ns, also verified by a 3 dB roll-off frequency of 5.9 MHz. As the first demonstration of photodetection using ZrGeTe4, these characteristics measured on a simple proof-of-concept device show the exciting potential of the ZrGeTe4 for room temperature IR optoelectronic applications.
  • Item
    Thumbnail Image
    Copper Tetracyanoquinodimethane (CuTCNQ): A Metal-Organic Semiconductor for Room-Temperature Visible to Long-Wave Infrared Photodetection
    Balendhran, S ; Hussain, Z ; Shrestha, VR ; Cadusch, J ; Ye, M ; Azar, NS ; Kim, H ; Ramanathan, R ; Bullock, J ; Javey, A ; Bansal, V ; Crozier, KB (AMER CHEMICAL SOC, 2021-08-18)
    Mid-wave and long-wave infrared (MWIR and LWIR) detection play vital roles in applications that include health care, remote sensing, and thermal imaging. However, detectors in this spectral range often require complex fabrication processes and/or cryogenic cooling and are typically expensive, which motivates the development of simple alternatives. Here, we demonstrate broadband (0.43-10 μm) room-temperature photodetection based on copper tetracyanoquinodimethane (CuTCNQ), a metal-organic semiconductor, synthesized via a facile wet-chemical reaction. The CuTCNQ crystals are simply drop-cast onto interdigitated electrode chips to realize photoconductors. The photoresponse is governed by a combination of interband (0.43-3.35 μm) and midgap (3.35-10 μm) transitions. The devices show response times (∼365 μs) that would be sufficient for many infrared applications (e.g., video rate imaging), with a frequency cutoff point of 1 kHz.
  • Item
    Thumbnail Image
    Nanostructured Fishnet Silicon Photodetector Pixels as a Fully-Contained Microspectrometer Chip
    Cadusch, JJ ; Meng, J ; Crozier, KB (IEEE, 2018)
    We experimentally demonstrate a microspectrometer comprising twenty silicon photodetector pixels, whose responsivities are engineered via nanostructured fishnet patterns. We computationally reconstruct the spectrum of light that illuminates the chip from the measured pixel photocurrents.
  • Item
    Thumbnail Image
    Dielectric metasurface comprising color hologram encoded into a color printing image
    Wen, D ; Cadusch, J ; Meng, J ; Crozier, KB (IEEE, 2019-01-01)
  • Item
    Thumbnail Image
    High-resolution mid-infrared spectral reconstruction using a subwavelength coaxial aperture array
    Craig, B ; Meng, J ; Shrestha, VR ; Cadusch, JJ ; Crozier, KB (OSA & IEEE, 2019-01-01)
    We demonstrate mid-infrared computational spectroscopy using an array of coaxial aperture filters. We experimentally determine material transmission spectra using an algorithm whose inputs are the transmission spectra and the power transmitted through each filter.
  • Item
    Thumbnail Image
    Machine learning design of plasmonic apertures for optical nanotweezers
    Li, N ; Shrestha, VR ; Cadusch, J ; Xu, Z ; Crozier, KB (OSA, 2019-01-01)
    We present a new approach to design plasmonic structures for optical trapping. Using a simulated annealing algorithm, the shape of a nanoaperture is optimized. An order of magnitude increase in trapping potential is predicted.
  • Item
    Thumbnail Image
    Nanostructured all-Silicon Photodetector Pixels with Tailored Responsivity Spectra
    Cadusch, JJ ; Meng, J ; Crozier, KB ; Mitchell, A ; RubinszteinDunlop, H (SPIE-INT SOC OPTICAL ENGINEERING, 2019)
    We experimentally demonstrate nanostructured silicon photodetectors which consist of subwavelength arrays of verticallyoriented waveguides etched into a P-I-N photodiode. Our device combines both spectral-filtering and photocurrentgeneration in one all-Si structure. We show that absorption and responsivity spectra of these nanophotonic devices can be tuned by appropriate geometric design.