Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Effect of ECG-derived respiration (EDR) on modeling ventricular repolarization dynamics in different physiological and psychological conditions
    Imam, MH ; Karmakar, CK ; Khandoker, AH ; Palaniswami, M (SPRINGER HEIDELBERG, 2014-10)
    Ventricular repolarization dynamics is an important predictor of the outcome in cardiovascular diseases. Mathematical modeling of the heart rate variability (RR interval variability) and ventricular repolarization variability (QT interval variability) is one of the popular methods to understand the dynamics of ventricular repolarization. Although ECG derived respiration (EDR) was previously suggested as a surrogate of respiration, but the effect of respiratory movement on ventricular repolarization dynamics was not studied. In this study, the importance of considering the effect of respiration and the validity of using EDR as a surrogate of respiration for linear parametric modeling of ventricular repolarization variability is studied in two cases with different physiological and psychological conditions. In the first case study, we used 20 young and 20 old healthy subjects' ECG and respiration data from Fantasia database at Physionet to analyze a bivariate QT-RR and a trivariate [Formula: see text] model structure to study the aging effect on cardiac repolarization variability. In the second study, we used 16 healthy subjects' data from drivedb (stress detection for automobile drivers) database at Physionet to do the same analysis for different psychological condition (i.e., in stressed and no stress condition). The results of our study showed that model having respiratory information (QT-RR-RESP and QT-RR-EDR) gave significantly better fit value (p < 0.05) than that of found from the QT-RR model. EDR showed statistically similar (p > 0.05) performance as that of respiration as an exogenous model input in describing repolarization variability irrespective of age and different mental conditions. Another finding of our study is that both respiration and EDR-based models can significantly (p < 0.05) differentiate the ventricular repolarization dynamics between healthy subjects of different age groups and with different psychological conditions, whereas models without respiration or EDR cannot distinguish between the groups. These results established the importance of using respiration and the validity of using EDR as a surrogate of respiration in the absence of respiration signal recording in linear parametric modeling of ventricular repolarization variability in healthy subjects.
  • Item
    Thumbnail Image
    Risk stratification of cardiac autonomic neuropathy based on multi-lag Tone-Entropy
    Karmakar, CK ; Khandoker, AH ; Jelinek, HF ; Palaniswami, M (SPRINGER HEIDELBERG, 2013-05)
    Cardiac autonomic neuropathy (CAN) is an irreversible condition affecting the autonomic nervous system, which leads to abnormal functioning of the visceral organs and affects critical body functions such as blood pressure, heart rate and kidney filtration. This study presents multi-lag Tone-Entropy (T-E) analysis of heart rate variability (HRV) at multiple lags as a screening tool for CAN. A total of 41 ECG recordings were acquired from diabetic subjects with definite CAN (CAN+) and without CAN (CAN-) and analyzed. Tone and entropy values of each patient were calculated for different beat sequence lengths (len: 50-900) and lags (m: 1-8). The CAN- group was found to have a lower mean tone value compared to that of CAN+ group for all m and len, whereas the mean entropy value was higher in CAN- than that in CAN+ group. Leave-one-out (LOO) cross-validation tests using a quadratic discriminant (QD) classifier were applied to investigate the performance of multi-lag T-E features. We obtained 100 % accuracy for tone and entropy with len = 250 and m = {2, 3} settings, which is better than the performance of T-E technique based on lag m = 1. The results demonstrate the usefulness of multi-lag T-E analysis over single lag analysis in CAN diagnosis for risk stratification and highlight the change in autonomic nervous system modulation of the heart rate associated with cardiac autonomic neuropathy.
  • Item
    No Preview Available
    Analyzing systolic-diastolic interval interaction characteristics in diabetic cardiac autonomic neuropathy progression
    Imam, MH ; Karmakar, CK ; Jelinek, HF ; Palaniswami, M ; Khandoker, AH (Institute of Electrical and Electronics Engineers (IEEE), 2015-01-01)
    Cardiac autonomic neuropathy (CAN), one of the major complications in diabetes, if detected at the subclinical stage allows for effective treatment and avoiding further complication including cardiovascular pathology. Surface ECG (Electrocardiogram)-based diagnosis of CAN is useful to overcome the limitation of existing cardiovascular autonomic reflex tests traditionally used for CAN identification in clinical settings. The aim of this paper is to analyze the changes in the mechanical function of the ventricles in terms of systolic-diastolic interval interaction (SDI) from a surface ECG to assess the severity of CAN progression [no CAN, early CAN (ECAN) or subclinical CAN, and definite CAN (DCAN) or clinical CAN]. ECG signals recorded in supine resting condition from 72 diabetic subjects without CAN (CAN-) and 70 diabetic subjects with CAN were analyzed in this paper. The severity of CAN was determined by Ewing's Cardiovascular autonomic reflex tests. Fifty-five subjects of the CAN group had ECAN and 15 subjects had DCAN. In this paper, we propose an improved version of the SDI parameter (i.e., TQ/RR interval ratio) measured from the electrical diastolic interval (i.e., TQ interval) and the heart rate interval (i.e., RR interval). The performance of the proposed SDI measure was compared with the performance of the existing SDI measure (i.e., QT/TQ interval ratio). The proposed SDI parameter showed significant differences among three groups (no CAN, ECAN, and DCAN). In addition, the proposed SDI parameter was found to be more sensitive in detecting CAN progression than other ECG interval-based features traditionally used for CAN diagnosis. The modified SDI parameter might be used as an alternative measure for the Ewing autonomic reflex tests to identify CAN progression for those subjects who are unable to perform the traditional tests. These findings could also complement the echocardiographic findings of the left ventricular diastolic dysfunction by providing additional information about alteration in systolic and diastolic intervals in heart failure.
  • Item
    Thumbnail Image
    Sensitivity of temporal heart rate variability in Poincare plot to changes in parasympathetic nervous system activity
    Karmakar, CK ; Khandoker, AH ; Voss, A ; Palaniswami, M (BMC, 2011-03-03)
    BACKGROUND: A novel descriptor (Complex Correlation Measure (CCM)) for measuring the variability in the temporal structure of Poincaré plot has been developed to characterize or distinguish between Poincaré plots with similar shapes. METHODS: This study was designed to assess the changes in temporal structure of the Poincaré plot using CCM during atropine infusion, 70° head-up tilt and scopolamine administration in healthy human subjects. CCM quantifies the point-to-point variation of the signal rather than gross description of the Poincaré plot. The physiological relevance of CCM was demonstrated by comparing the changes in CCM values with autonomic perturbation during all phases of the experiment. The sensitivities of short term variability (SD1), long term variability (SD2) and variability in temporal structure (CCM) were analyzed by changing the temporal structure by shuffling the sequences of points of the Poincaré plot. Surrogate analysis was used to show CCM as a measure of changes in temporal structure rather than random noise and sensitivity of CCM with changes in parasympathetic activity. RESULTS: CCM was found to be most sensitive to changes in temporal structure of the Poincaré plot as compared to SD1 and SD2. The values of all descriptors decreased with decrease in parasympathetic activity during atropine infusion and 70° head-up tilt phase. In contrast, values of all descriptors increased with increase in parasympathetic activity during scopolamine administration. CONCLUSIONS: The concordant reduction and enhancement in CCM values with parasympathetic activity indicates that the temporal variability of Poincaré plot is modulated by the parasympathetic activity which correlates with changes in CCM values. CCM is more sensitive than SD1 and SD2 to changes of parasympathetic activity.
  • Item
    Thumbnail Image
    Analysis of fetal heart rate asymmetry before and after 35 weeks of gestation
    Karmakar, C ; Kimura, Y ; Palaniswami, M ; Khandoker, A (ELSEVIER SCI LTD, 2015-08)
  • Item
    Thumbnail Image
    Tone Entropy Analysis of Foetal Heart Rate Variability
    Khandoker, A ; Karmakar, C ; Kimura, Y ; Endo, M ; Oshio, S ; Palaniswami, M (MDPI, 2015-03)
  • Item
    Thumbnail Image
    Toe clearance and velocity profiles of young and elderly during walking on sloped surfaces.
    Khandoker, AH ; Lynch, K ; Karmakar, CK ; Begg, RK ; Palaniswami, M ( 2010-04-28)
    BACKGROUND: Most falls in older adults are reported during locomotion and tripping has been identified as a major cause of falls. Challenging environments (e.g., walking on slopes) are potential interventions for maintaining balance and gait skills. The aims of this study were: 1) to investigate whether or not distributions of two important gait variables [minimum toe clearance (MTC) and foot velocity at MTC (VelMTC)] and locomotor control strategies are altered during walking on sloped surfaces, and 2) if altered, are they maintained at two groups (young and elderly female groups). METHODS: MTC and VelMTC data during walking on a treadmill at sloped surfaces (+3 degrees , 0 degrees and -3 degrees ) were analysed for 9 young (Y) and 8 elderly (E) female subjects. RESULTS: MTC distributions were found to be positively skewed whereas VelMTC distributions were negatively skewed for both groups on all slopes. Median MTC values increased (Y = 33%, E = 7%) at negative slope but decreased (Y = 25%, E = 15%) while walking on the positive slope surface compared to their MTC values at the flat surface (0 degrees ). Analysis of VelMTC distributions also indicated significantly (p < 0.05) lower minimum and 25th percentile (Q1) values in the elderly at all slopes. CONCLUSION: The young displayed a strong positive correlation between MTC median changes and IQR (interquartile range) changes due to walking on both slopes; however, such correlation was weak in the older adults suggesting differences in control strategies being employed to minimize the risk of tripping.
  • Item
    Thumbnail Image
    Characterization Of Chimeric Surface Submentalis EMG Activity During Hypopneas In Obstructive Sleep Apnea Patients
    Daulatzai, MA ; Khandoker, AH ; Karmakar, CK ; Palaniswami, M ; Khan, N (IEEE, 2009)
  • Item
    Thumbnail Image
    Unravelling unique qualitative and quantitative characteristics of the surface submentalis EMG in OSA polysomnograms
    Daulatzai, M ; Karmakar, C ; Khan, N ; Khandoker, A ; Palaniswami, M (IEEE, 2010-12-01)
  • Item
    Thumbnail Image
    Lateral Decubitus Posture during Sleep: Sub-Groups of Obstructive Sleep Apnea Patients - Therapeutic Value of Vertical Position in OSA
    Daulatzai, MA ; Khan, N ; Karmakar, C ; Khandoker, A ; Palaniswami, M ; Marusic, S ; Palaniswami, M ; Gubbi, J ; Law, YW (IEEE, 2009)