Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Dynamic Practical Stabilization of Sampled-data Linear Distributed Parameter Systems
    Tan, Y ; Trelat, E ; Chitour, Y ; Nesic, D (IEEE, 2009-01-01)
    In this paper, dynamic practical stability properties of infinite-dimensional sampled-data systems are discussed. A family of finite-dimensional discrete-time controllers are first designed to uniformly exponentially stabilize numerical approximate models that are obtained from space and time discretization. Sufficient conditions are provided to ensure that these controllers can be used to drive trajectories of infinite-dimensional sampled-data systems to a neighborhood of the origin by properly tuning the sampling period, space and time discretization parameters and choosing an appropriate filtering process for initial conditions.
  • Item
    Thumbnail Image
    On Extremum Seeking in Bioprocesses with Multivalued Cost Functions
    Bastin, G ; Nesic, D ; Tan, Y ; Mareels, I (WILEY, 2009)
    Finding optimal operating modes for bioprocesses has been, for a long time, a relevant issue in bioengineering. The problem is of special interest when it implies the simultaneous optimization of competing objectives. In this paper, we address the problem of finding optimal steady states that achieve the best tradeoff between yield and productivity by using nonmodel-based extremum-seeking control with semiglobal practical stability and convergence properties. A special attention is paid to processes with multiple steady states and multivalued cost functions.
  • Item
    Thumbnail Image
    On global extremum seeking in the presence of local extrema
    Tan, Y ; Nesic, D ; Mareels, IMY ; Astolfi, A (PERGAMON-ELSEVIER SCIENCE LTD, 2009-01-01)
    We propose a global extremum seeking scheme which can seek the global optimal value in the presence of local extrema. It is shown that the proposed global extremum seeking scheme can converge to an arbitrarily small neighborhood of the global extremum from an arbitrarily large set of initial conditions if sufficient conditions are satisfied. A simple example illustrates the effectiveness of the proposed scheme.