Electrical and Electronic Engineering - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Optimal contract design for effort-averse sensors
    Farokhi, F ; Shames, I ; Cantoni, M (Taylor & Francis, 2018-06-28)
    A central planner wishes to engage a collection of sensors to measure a quantity. Each sensor seeks to trade-off the effort it invests to obtain and report a measurement, against contracted reward. Assuming that measurement quality improves as a sensor increases the effort it invests, the problem of reward contract design is investigated. To this end, a game is formulated between the central planner and the sensors. Using this game, it is established that the central planner can enhance the quality of the estimate by rewarding each sensor based on the distance between the average of the received measurements and the measurement provided by the sensor. Optimal contracts are designed from the perspective of the budget required to achieve a specified level of error performance.
  • Item
    Thumbnail Image
    Structured preconditioning of conjugate gradients for path-graph network optimal control problems
    Zafar, A ; Cantoni, M ; Farokhi, F (IEEE, 2021-01-01)
    A structured preconditioned conjugate gradient (PCG) based linear system solver is developed for implementing Newton updates in second-order methods for a class of con- strained network optimal control problems. Of specific interest are problems with discrete-time dynamics arising from the path-graph interconnection of N heterogeneous sub-systems. The arithmetic complexity of each PCG step is O(NT), where T is the length of the time horizon. The proposed preconditioning involves a fixed number of block Jacobi iterations per PCG step. A decreasing analytic bound on the effective conditioning is given in terms of this number. The computations are decomposable across the spatial and temporal dimensions of the optimal control problem into sub-problems of size independent of N and T. Numerical results are provided for two example systems.
  • Item
    Thumbnail Image
    Linear quadratic control computation for systems with a directed tree structure
    Zafar, A ; Farokhi, F ; Cantoni, M (ELSEVIER, 2020)
  • Item
    Thumbnail Image
    Rigid-Profile Input Scheduling Under Constrained Dynamics With a Water Network Application
    Lang, A ; Cantoni, M ; Farokhi, F ; Shames, I (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2021-11)
    The motivation for this work stems from the problem of scheduling requests for flow at supply points located throughout an automated network of open-water channels. The off-take flows are rigid-profile inputs to the system dynamics. In particular, the channel operator can only shift orders in time to satisfy constraints on the automatic response to changes in the load. This leads to a nonconvex semi-infinite programming problem, with a sum-separable cost that encodes the collective sensitivity of end-users to scheduling delays. The constraints encode the linear time-invariant continuous-time dynamics and limits on the state across a continuous scheduling horizon. Discretization is used to arrive at a more manageable approximation of the semi-infinite program. A method for parsimoniously refining the discretization is applied to ensure continuous-time feasibility for solutions of the approximate problem. It is then shown how to improve the cost without loss of feasibility. Supporting analysis is provided, along with simulation results for a realistic irrigation channel setup to illustrate the approach.
  • Item
    No Preview Available
    Structured computation of optimal controls for constrained cascade systems
    Cantoni, M ; Farokhi, F ; Kerrigan, E ; Shames, I (Taylor & Francis, 2020-01)
    Constrained finite-horizon linear-quadratic optimal control problems are studied within the context of discrete-time dynamics that arise from the series interconnection of subsystems. A structured algorithm is devised for computing the Newton-like steps of primal-dual interior-point methods for solving a particular re-formulation of the problem as a quadratic program. This algorithm has the following properties: (i) the computation cost scales linearly in the number of subsystems along the cascade; and (ii) the computations can be distributed across a linear processor network, with localised problem data dependencies between the processor nodes and low communication overhead. The computation cost of the approach, which is based on a fixed permutation of the primal and dual variables, scales cubically in the time horizon of the original optimal control problem. Limitations in these terms are explored as part of a numerical example. This example involves application of the main results to model data for the cascade dynamics of an automated irrigation channel in particular.
  • Item
    Thumbnail Image
    Implementing homomorphic encryption based secure feedback control
    Tran, J ; Farokhi, F ; Cantoni, M ; Shames, I (Elsevier BV, 2020-04)
    This paper is about an encryption based approach to the secure implementation of feedback controllers for physical systems. Specifically, Paillier’s homomorphic encryption is used to digitally implement a class of linear dynamic controllers, which includes the commonplace static gain and PID type feedback control laws as special cases. The developed implementation is amenable to Field Programmable Gate Array (FPGA) realization. Experimental results, including timing analysis and resource usage characteristics for different encryption key lengths, are presented for the realization of an inverted pendulum controller; as this is an unstable plant, the control is necessarily fast.
  • Item
    Thumbnail Image
    Promoting Truthful Behavior in Participatory-Sensing Mechanisms
    Farokhi, F ; Shames, I ; Cantoni, M (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2015-10)